Shaik Khaja Mohiddin, Yalavarthi Suresh Babu

Abstract: Due to an exponential growth of technology with huge and huge amount of data which is generated and has to be processed and this data is not related to a single area which is related to multiple areas and also this raises the need for the storage of data, which emphasizes the importance of cloud, now every small industry or small organizations has moved maximum towards cloud. Storage of data in cloud has many advantages including which has accessing the data with respect to any place, with respect to any device with a minimal internet connection beside this there is a downfall with respect to the intruders who are considered as the major threat for the data stored in the cloud. The importance which is given for storage of data in the cloud the same has to be implemented for protection of data inside the cloud, well which sometimes failed to be achieved this stresses for the need of Intrusion Detection System. An Intrusion Detection System (IDS) also plays an important role during the process of Cloud Forensics. In This paper we have traced out the importance of IDS in Cloud Forensics by using a snort IDS which is an open source we have gone with the process of using snort by tuning the rules in snort according to our requirements. Where the intrusion activities are being sniffed by the IDS which are then detected by the Forensic Analysis tools and then they are being analysed during the forensic process.

Index Choice: IDS: Intrusion Detection System, IPS: Intrusion protection system, CF: Cloud Forensics, SLA: Service Level Agreement, CSP: Cloud Service Provider.

I. INTRODUCTION

The entire paper is divide into 12 sections where each section is having its own significance where I section deals with Introductions with the basic concepts which are being involved with IDS and also describes basic types in IDS, II section deals with the various capabilities which are being exhibited by IDS due to which it is considered as the tool for sniffing, III section deals with snort architecture, IV section deals with basic concepts of Forensic in cloud, V section deals with the three dimensional view of cloud forensics, VI section describes about the basic steps which has to be followed from collection to the presentation of forensic evidences, VII section deals with the implementation which clearly shows the steps which are being involved from the installation of snort IDS in cloud environment to the successfully running of snort, VIII discussed about the

Revised Manuscript Received on December 22, 2018.

Shaik Khaja Mohiddin, Research Scholar , Dept. of CSE, Acharya Nagarjuna Univeristy, Guntur, Asso.Prof.,Dept. of CSE, VVIT , Nambur Guntur, Andhra Pradesh, India

Dr. Yalavarthi Suresh Babu, Prof. Dept. of CSE, JKC College, Guntur, Andhra Pradesh, India

results, XI section describes Comparison of various cloud forensic existing tools their usage along with importance, X deals with conclusion and how to extend the concept in future XI section deals with references.

In general we can classify the intrusion detection/ Prevention systems into either active or passive IDS or IPS. In Active Intrusion Detection systems or Intrusion prevention systems they are being configured automatically to block any suspected attacks without the intervention of an operator, here the advantage is that according to the attack the system carries out the corrective action. Where as in Passive IDS/IPS is just designed to just detect and alert the attack and informs that to the operator but it does not take any preventive or corrective measures to carry out the task.

In a general scenario we can classify various IDS in the following different categories which are discussed below

A. Network Intrusion detection systems (NIDS)

Here by monitoring the network traffic with respect to a network hubs, network switches, network taps an IDS is used to analyze the behaviour of intruder during the unauthorized attacks and to carry out the necessary tasks. e.g. snort.

B. Host-Based Intrusion Detection System (HIDS)

Here the presence of an agent on the host carries out the required application logs, analyzing system calls, modified file systems; here software agents are present who carry out the task of IDS.

C. Perimeter Intrusion Detection System (PIDS)

For certain infrastructure having perimeter fences when an intrusion attack happens on those fences then they are being traced with exact position by the IDS.

D. VM Based Intrusion Detection Systems (VMIDS)

Here the intruder activities on a particular cloud are going to be monitored by the VM by installing IDS on the VM itself.

II. CAPABILITIES OF IDS

When unauthorized activities are being carried out over a given network then they are being traced out and intimated to the operators with the help of IDS and when if necessary depending on the IDS it may carry out the overcoming activities with or without operator's intervention. IDS have the following general capabilities.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

425

- Whenever IDS detects any unauthorized event then they are immediately intimates the operator with relevant alarm and notification.
- Even a non IT expert staff can also carry out the operations using these IDS with the help of user friendly environment created by them.
- It prevents the data after the attack simply by blocking the server or the intruders in order to avoid further loss of data
- Provides an easy way to understand, detect and tune the operating system in order to carry out audit trails.
 - User policy violation tracking.

III. SNORT ARCHITECTURE

Snort architecture is accomplished with five components which work to analyze traffic as well as monitoring the network it is helpful for generating alerts when it encounters signs for intrusions.

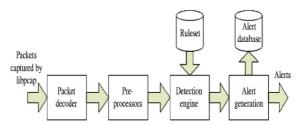


Fig 1: Snort architecture (source snort manual)

It has the following components

Packet decoder: captures the packets from network traffic and initiates the detection engine.

Preprocessors: with respect to different plugins the packets which are captures are then processed.

Detection engine: the preprocessor data is sent to the detection engine where the data packets are being matched with the rules and depending on the packets with respect to different time the malicious packets are traced out.

Logging and alerting system: here the logging and alerts are managed by the systems.

Output module: here the different logs generated by different alerting systems are being saved.

IV. FORENSICS IN CLOUD

Cloud forensics is the combination of digital forensic and cloud computing, when certain mischief happens with the data stored in the cloud then cloud forensic is the scenario where one can get relevant information regarding what has been carried out with respect to the clients data which is stored in the cloud.

Steps involved in the cloud forensic process: cloud forensic is carried out by the following steps:

- **Identification:** before starting the forensic investigation one has to exactly find out whether really some mischief has happened or not after conformation and identification then investigator can start his investigation.
- **Preservation:** the collected clues during the investigation play an important role during the investigation process so they should be preserved carefully for future references.

• **Collection:** whatever were the clues which are collected during the investigation should be preserved properly.

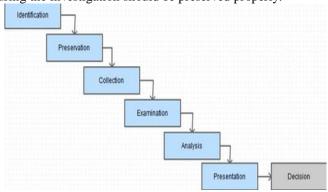


Fig2. Steps to be carried out during the forensic process in the cloud.

- Examination: all the collected clues during the forensic investigation in the cloud should be examined properly to get a conclusion
- Analysis: the collected, examined data should be analyzed properly so that a conclusion is derived by the investigator on what might happen with the data by the intruder.
- **Presentation**: as the collected information is in the form of technical information which has to present in the cyber court where some judge may not be aware of the technical terminology completely so the presentation plays a vital role.
- **Decision:** depending on the analyzed and presented data before the court decision is taken by the court which has to be followed strictly and the accused should be convicted.

V. APPLYING THREE DIMENSIONAL CONCEPTS FOR CLOUD FORENSICS

When major cloud service providers such as Google, Amazon, and Salesforce.com are compared among themselves common aspects is noticed that these cloud tycoons have extended their cloud data centers throughout the world and they provide the services on the basis of cost effectiveness, service availability, data in the cloud centers are being replicated among other data centers which are located in various jurisdictions so that during an unexpected failure they can have the backup of their relevant data. The way, in which these service providers' deals with The customers during the forensics concepts differ from each other, the emergence of multi-tenancy, multi-jurisdiction strengthens to have them as a default setting for cloud forensic. When a problem is being encountered these cloud service providers have their different approaches to overcome the same problem. When certain mischief is happened with respect to the data using cloud forensic one can trace out the cause for the mischief and related information regarding the status of data.

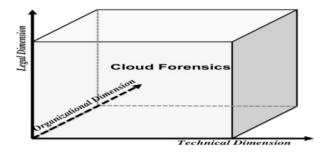


Fig3: showing three dimensions of cloud forensic.

During the early developments of cloud forensics was assumed to be associated with three dimensions such as legal, technical and organizational.

Cloud Forensic	Associated with Parameters
Dimensions	
Technical	They compromise the tools and the techniques which are being carried out during forensic process in the cloud.
Organizational	Investigators: they carry out the examination when certain misconduct is carried out with the cloud data they should be an expertise person. IT professionals: they provide technical support to the investigators during the investigation by the cloud forensic expert. • Incident Handlers: when certain incidents are happening with respect to data leakage in the cloud, breach of data, when cloud data effected by malicious codes they play a vital role in the above said situations. • Legal Advisors: they deal with legal issued pertaining to the cloud such as multi-tenancy and jurisdictional issues so that forensic activities should not be disturb the integrity of others data stored in the cloud. • External Assistance: External parities and CSP should be taken help during the forensic investigation
Legal	• Here development with respect to the SLA agreements between the CSP and clients along with certain regulations which assures that there is no breach carried out when the investigation on the data stored in the cloud is carried out. [1][2]

Table 1: Shows the three dimensional view of cloud forensics

VI. STEPS TO BE CARRIED OUT DURING CLOUD FORENSICS

Following are the steps which are involved during the cloud forensic process and are stated as identification, collection, organization and presentation. Which are explained as follows.

Fig4: Steps involved in cloud forensic process

Identification: Identification is the first and initial step which is carried out during the forensic analysis here we have to identify whether really mischief has been happened with the data in the cloud.

Collection: The clues which come across during the forensic analysis should be collected properly and preserved so that they can be presented in a proper way.

Organization: Clues which are collected should be organized in a proper way for presentation if the collected clues are not presented in a proper way then it may be lead for the offender to escape.

Presentation: The clues which have been collected during the forensic investigation should be presented in a proper way where non technical legal persons has to get satisfied who are not much familiar with the technical process and terms.

Forensic	List of challenges	
phase		
identification	Decentralization information	
	Reliance chain	
	Reliance on CSP	
collection	Unavailability	
	Trust	
	Time synchronization	
	Multi-Tenancy	
	Cross-jurisdiction	
organization	Erased information	
	Lack of investigation tools	
	Make familiarize of technical concepts to	
presentation	non technical persons	
	Lack of Experienced persons	

Table 2: Shows Challenges in cloud forensics

VII. IMPLEMENTATION

On VMWare workstation we have installed ubuntu on one virtual machine and in ubuntu we have installed snort, which is an open source IDS which is helpful for sniffing unauthorized attacks which are being carried out on the cloud for that purpose we have installed a windows server. We have tuned snort IDS with the required

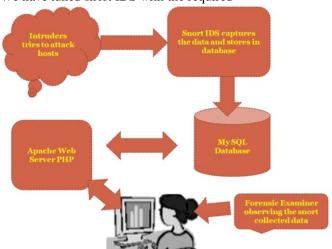


Fig 5: Snort used in NIDS

E. Installation code

sudo apt-get update && sudo apt-get dist-upgrade —y mkdir ~/snort_src

cd ~/snort_src

sudo apt-get install -y build-essential autotools-dev libdumbnet-dev libluajit-5.1-dev libpcap-dev \ libpcap-dev zlib1g-dev pkg-config libhwloc-dev

sudo apt-get remove -y cmake

cd ~/snort_src

 $wget\ https://cmake.org/files/v3.10/cmake-3.10.\ 3.\ tar.gz$

tar -xzvf cmake-3.10.3.tar.gz

cd cmake-3.10.3 ./bootstrap

make

sudo make install

sudo apt-get install -y liblzma-dev openssl libssl-dev cpputest libsqlite3-dev \ uuid-dev

sudo apt-get install -y

asciidoc dblatex source-highlight w3m......

VIII. OBTAINED RESULTS AND DISCUSSION

After successful installation of snort IDS which is a free open source, whenever a particular unauthorised access is being carried out that is by default sniffed by snort IDS and then it sends an alarm to the forensic examiner who has been analyzing the data sent and collected by snort in the database. Where the incident is first examined if its unauthorised then the clues are being collected and examined thoroughly and then they are presented in a proper way. The required attacks are being performed which are being monitored and recorded in the snort database and during the investigation it is used. Inside the snort database the information during the attack by the intruder is noted in the form of packets which are should in the following diagrams

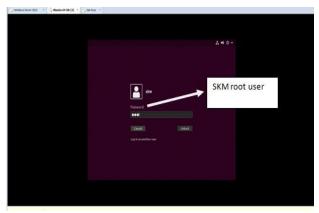


Fig 6: Creation of Root user

Fig 7: installation of required packages for snort.

Fig 8: Checking the succesfull installation of snort in

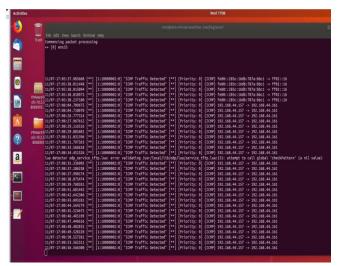


Fig9: snort sniffing the attack made on server from kali



Fig 10: Total results which are being sniffed by snort IDS

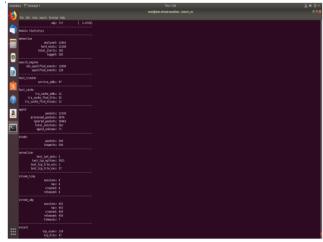


Fig: 11 Total results categorised in group packest

IX.AN OVERVIEW OF THE EXISTING CLOUD FORENSIC TOOLS:

There exists certain limitations for digital forensics which can be defined by [3][4], which exists in the areas of Legal Aspect, volume of data, Capacity of Tools, Forensic Analysis

Automation and visualization, these existing limitations make further need for the new cloud forensic tool which has to carry out the necessary things.

	y out the necessary th	
S. no.	Tool name	Purpose
1	Digital	It is an open source; it can be
	Forensics Frame	easily handled by non-experts
	works	as well as experts also.
	Open	It is an open source forensic
	computer	framework, it is used for
2	Forensics	storing data and it uses Postgre
	Architecture	SQL, it works on Linux
	- II cimicolui c	platform.
		Computer Aided
		Investigative Environment, it
3	CAINE	is an open source, it is helpful
		in integrating software
		modules from existing software
<u> </u>		tools.
	V Warra	It runs on almost all available windows versions,
4	X-Ways Forensics	digital examiners consider it as
	Forensics	an advanced stand.
		It is a operating system
	SANS	forensic used for multipurpose
	Investigative	which has all required tools to
5	Forensics Toolkit	be used in digital forensic
	(SIFT)	process which has an inbuilt
	(=== =)	platform on Ubuntu .
		This tools has a forensic
		platform which is utilized for
		multipurpose it gathers
6	EnCase	information from different
		devices very fast and also this
		tool also produces report based
		evidence. it is a paid tool.
	Registry Recon	This is a paid tool it is well
		known for registry analysis, it
7		gathers the registry info., from
		evidence and again rebuilds the
<u> </u>		registry. It is used in the forensic
0	Sleuth Kit	analysis of computers, it is a
8	(+Autopsy)	windows and unix based tool.
-	Libforensics	It is available with various
9		demo tools in order to extract
		information from different
		types of evidences.
		It is used for analysis in
10	Volatility	malware, it is a memory based
		forensic framework.
11	WindowsSCO PE	It is used for volatile memory
		analysis it also works as reverse
		engineering tool.
l		

	T	I
		This tool is used to recover
12	Corner's	the data from the devices which
	Toolkit	are working based on Unix
		operating systems.
		Using this tool one can
	Overgon	gather the information from
13	Oxygen Eoropeia Spita	mobile; one can also recover
	Forensic Suite	calendar information, call logs,
		contacts.
		This tool is very fast as it
	Bulk	does not follow file system
14	Extractor	structure during the extraction
		of data from files.
		The data from the
	Xplico	applications which uses
15		network and internet protocols
		can be extracted using this tool.
		It is used for file and memory
		analysis, when a process is
		running on the host it collects
16	Mandiant Redline	the information, it is also
10		helpful to gather meta data,
		registry data, and internet
		history for building up a report.
	Computer	Forensic experts in
	Online Forensic	computers use this tool kit, as it
17	Evidence	was developed by Microsoft, it
	Extractor	collects evidences within the
	(COFEE)	windows systems.
18	P2eXplorer	It is an image mounting tool, on the hard disk these images
		are mounted and they are then
		analyzed by file explorer.
	PlainSight	With Linux distribution, It is
19		a CD based Knoppix, it is useful in gathering information
		related to internet history.
		Developed by Micro
	XRY	1 ,
20		Systems, it is helpful for recovery of crucial and
		1
		analyzed data from the mobile.
	HELIX3	It is an incident responsive CD based digital forensic suite,
21		it also includes hex editors,
		-
		tools for password cracking.
	Cellebrite UFED	It is very helpful to collect
22		information with high accuracy
		on mobile data.
24		This tool is used for the
	17/17/2 T	examination of folders and files
	FTK Imager	which are being stored in
		network drives, DVDs,/CDs,
		hard.
25	DEFT	It is a linux based CD which
		consists of number of open
		source and freely available
		forensic tools.

D	Bulk	This tool is helpful for
26	Extractor	scanning of directory of files,
	Latt uctor	disk images, e mail address.

Table 3: Shows various tools which are being used in the cloud during any kind of cyber attack

X. CONCLUSION AND FUTURE WORK

We are planning to use this kind of snort IDS in a cloud environment which is an experimental set on a VMware workstation where we are using three virtual machines which are having three different IP addresses and all the three VMs are being communicated among themselves easily where we are installing our requirements with respect to forensics analysis using forensic analysis tools such as Slueth Kit, CAINE, Xplico... we collect the results which are being obtained with respect to snort IDS. So rather than storing and accessing the data through the cloud from anywhere when certain mischief has happened to the data than it has to be immediately brought to the notice of forensic experts, and it is also stressed that FaaS (Forensics as a Service) should be considered as the basic requirements along with the necessary services which are being included IaaS,PaaS,SaaS...

XI. REFERENCES

- Broadhurst R. Developments in the global law enforcement of cyber- crime. Policing: An International Journal of Police Strategies & Management. 2006 Jul 1;29(3):408-33..
- Liles S, Rogers M, Hoebich M. A survey of the legal issues facing digital forensic experts. InIFIP International Conference on Digital Forensics 2009 Jan 26 (pp. 267-276). Springer, Berlin, Heidelberg.
- Henry P, Williams J, Wright B. The sans survey of digital forensics and incident response. SANS Institute InfoSec Reading Room. 2013 Jul.
- Miranda Lopez E, Moon SY, Park JH. Scenario-Based Digital Forensics Challenges in Cloud Computing. Symmetry. 2016 Oct 20;8(10):107.
- Mohiddin S.K., Yalavarthi. An analytical comparative approach of cloud forensic tools during cyber attack in cloud". Proceedings in Advanced in intelligent and system computing. 2018.