Properties of Multisets

P.M.Mahalakshmi, P.Thangavelu

Abstract: The combinatorial properties of multisets are characterized. Some concepts in multiset topological spaces are discussed.

Keywords: Multisets, absolute mset, topology, multiset topology, open mset. MSC2010 : 54A05,54A10.

I. INTRODUCTION AND PRELIMINARIES

Multiset theory was introduced by Yager and Wayne D. Blizard in [1],[2]. Multiset topological spaces are studied by Girish& Sunil Jacob John in [3],[4]. Functions between multiset topological spaces have been extensively studied in [6]. In this paper sub msets of a mset and sub msets of mset topological spaces are characterized.

Definition 1.1: An mset M is a pair (X, C) where X is a non empty set and C: X → \{0,1,2,3,...\} is a function known as the count function of M.

Some authors use the terminology to identify the count function C with the mset M. That is C(x) is identified with M(x). The elements having zero count need not be written in the above representation of a mset. The notation a"b" is also used to represent an mset over \{a, b\}.

Notations 1.2: Let X be a set from which msets are constructed.

[X]^w = the collection of all msets over X.

[X]^w = the collection of all msets over X with maximum count w.

For every x∈X if M'(x) = w − M(x) then M' is the complement of M. The notations \(\phi_x\) and 1x denote the empty mset and the absolute mset respectively in \(X)^w\).

Definition 1.3: Let M and N be two msets over X. Then

(i). M = N if M(x) = N(x),

(ii). M is a sub mset of N if M(x) ≤ N(x),

(iii). (M ∪ N)(x) = Max{M(x), N(x)},

(iv). (M ∩ N)(x) = Max{M(x)−N(x), 0} and

(vi). If N is a sub mset of M then (M\N)(x) = M(x) − N(x) for x in X.

Lemma 1.4: M\N = M\N if and only if N is a sub mset of M.

Definition 1.5: If \(\{M_i : i\in\Omega\}\) is a family of msets over X then

\((\cup\{M_i : i\in\Omega\})(x) = \text{Sup}\{M_i(x) : i\in\Omega\}\) and \((\cap\{M_i : i\in\Omega\})(x) = \text{Inf}\{M_i(x) : i\in\Omega\}\).

Example 1.6: Let R be the set of all real numbers. Define \(M_i(x) = [x] + 1\) for every i=1,2,3,... Then we see that \(M_1(0) = M_2(1) = \cdots\) does not exist. Therefore we restrict our study to msets in \(X)^w\) for some appropriate positive integer w.

Definition 1.7: The ordinary set N*={x∈X: N(x) > 0} is called the support of N. N* is also called the root set of N.

The following lemma is due to Padmapriya[5].

Lemma 1.8: For A, B∈\(X)^w\), the following properties hold.

(i) If A ⊆ B then A* ⊆ B*,

(ii) (A ∩ B)* = A* ∩ B*,

(iii) (A ∪ B)* = A* ∪ B*.

Remark 1.9: The results (ii) and (iii) of Lemma 1.8 are also valid for arbitrary union and intersection of msets.

Throughout this paper N is an mset in \(X)^w\).

Definition 1.10: A collection τ of msubsets of N is a multiset topology on N or (N, τ) is a multiset topological space if

(i) N and \(\phi_X\) are in τ,

(ii) τ is closed under finite intersection.

(iii) τ is closed under arbitrary union.

The members of τ are called open msets in (N, τ). A sub mset B of N is said to be a closed mset if NB is an open mset. The interior of B denoted by IntB and the closure of B denoted by ClB of a sub mset B of N can be defined in the usual manner.

II. GENERAL PROPERTIES

Proposition 2.1: If A, B ∈ \(X)^w\) and A ∩ B = \(\phi_X\) then

(i). A* ⊆ (B*)* and B* ⊆ (A*)*,

(ii) for every x∈X, B(x) ≤ A'(x) or A(x) ≤ B'(x)

Proof: Let A, B be any two multisets over X with maximum multiplicity w, such that A ∩ B = \(\phi_X\). Then A* ∩ B* = (A ∩ B)* = \(\phi\) that implies A* ⊆ X\B* and B* ⊆ X\A*. If A* ⊆
Properties of Multisets

Let $A \subseteq \mathbb{X}$ and $B \subseteq \mathbb{X}$ be multisets. Then $A^* \subseteq B^* = \{x: B(x) = 0\} = \{x: B'(x) = w\} = \{x: B(x)^* = 0\}$ implies $A^* \subseteq (B')^*$. Again if $B^* \subseteq A^*$ then $B^* \subseteq (A')^*$. This proves (i).

$(A \cap B)(x) = \text{Min}\{A(x), B(x)\} = 0 \Rightarrow A(x) = 0$ or $B(x) = 0$ \Rightarrow $A'(x) = w$ or $B'(x) = w \Rightarrow B(x) \leq A'(x)$. This proves (ii).

Proposition 2.2: If A and B are multisets of X such that $A \cap B = \emptyset$ then

(i). $A^* \subseteq (N \cap B)^*$ and $B^* \subseteq (N \cap A)^*$

(ii). for every $x \in X$, $B(x) \leq (N \cap A)(x)$ or $A(x) \leq (N \cap B)(x)$.

Proof: Suppose A and B are multisets of X such that $A \cap B = \emptyset$. Then $N \cap B = N \cap B$ and $N \cap A = N \cap A$. Also $A^* \subseteq N^* A^*$ and $B^* \subseteq N^* B^*$. Thus $A^* \subseteq N^* A^*$ and $B^* \subseteq N^* B^*$.

If $A^* \subseteq N^* A^*$ then $A^* \subseteq N^* B^* = \{x \in N^*: B(x) = 0\} = \{x \in N^*: (N \cap B)(x) \leq N^*: (N \cap B)(x) > 0\}$ implies $A^* \subseteq (N \cap B)^*$. Again if $B^* \subseteq N^* A^*$ then $B^* \subseteq (N \cap A)^*$.

This proves (i).

$(A \cap B)(x) = \text{Min}\{A(x), B(x)\} = 0 \Rightarrow A(x) = 0$ or $B(x) = 0$ \Rightarrow $(N \cap A)(x) = N(x)$ or

$(N \cap B)(x) = N(x)$

$(N \cap A)(x) = N(x)$ and $B(x) \leq (N \cap A)(x)$ or $A(x) \leq (N \cap B)(x)$.

Proposition 2.3: If $A, B \subseteq [X]^n$ and $A \cup B = 1_1$ then

(i). $X \setminus A^* \subseteq B^*$ and $X \setminus B^* \subseteq A^*$

(ii). for every $x \in X$, $B(x) \leq A(x)$ and $A'(x) \leq B(x)$.

Proof: Let A, B be any two multisets over X with maximum multiplicity w, such that $A \cup B = 1_1$. Since $A \cup B = 1_1$, $(A \cup B)^* = X$ that implies $A^* \cup B^* = X$ so that $(X \setminus A^*) \cap (X \setminus B^*) = \emptyset$. Therefore $X \setminus A^* \subseteq B^*$ and $X \setminus B^* \subseteq A^*$ which proves (i).

Now for $x \in X$,

$(A \cup B)(x) = \text{Max}\{A(x), B(x)\} = w \Rightarrow A(x) = w$ or $B(x) = w$.

If $A(x) = w$ then $B'(x) = 0 \Rightarrow A'(x) = 0 \leq B(x)$.

If $B(x) = w$ then $B'(x) = 0 \leq A(x)$ and $A'(x) \leq B(x)$.

This proves (ii).

III. COMBINATORIAL PROPERTIES

We begin this section with the following lemma which will be useful.

Lemma 3.1: For any natural number r, \[
\left\lfloor \frac{r}{2} \right\rfloor \leq r - \left\lfloor \frac{r}{2} \right\rfloor \leq \left\lfloor \frac{r}{2} \right\rfloor + 1
\]

where $[s]$ denotes the integral part of a real number s.

Proposition 3.2: Let A be a multiset of a set N over X such that $A(x) \leq \left\lfloor \frac{N(x)}{2} \right\rfloor$ for every $x \in X$. Then $A \subseteq N \Theta A = N \setminus A$.

The inclusion may be proper.

Proof:

$N \Theta A(x) = \text{Max}\{N(x) - A(x), 0\} = N(x) - A(x) \geq N(x) - \left\lfloor \frac{N(x)}{2} \right\rfloor \geq A(x)$.

This shows that $A \subseteq N \Theta A$. If $N = a^b c^2$ and $A = a^b c^2$ then the condition $A(x) \leq \left\lfloor \frac{N(x)}{2} \right\rfloor$ is satisfied and $A = a^b c^2 \subseteq a^b c = N \Theta A$ so that A is a part of $N \Theta A$. This proves the proposition.

Proposition 3.3: Let A be a multiset of a set N over X such that $A(x) > \left\lfloor \frac{N(x)}{2} \right\rfloor$ for every $x \in X$. Then $N \setminus A = N \Theta A \subseteq A$. The inclusion may be proper.

Proof:

$N \Theta A(x) = \text{Max}\{N(x) - A(x), 0\} = N(x) - A(x) \leq N(x) - \left\lfloor \frac{N(x)}{2} \right\rfloor < N(x) - \left\lfloor \frac{N(x)}{2} \right\rfloor + 1 = A(x) + 1$. Therefore $N \Theta A(x)$ is satisfied and $N \Theta A = a^b c^2 \subseteq a^b c = A$ so that $N \Theta A$ is a part of A. This proves the proposition.

Proposition 3.4: Let A be a multiple set of a set N over X such that $A(x) = \left\lfloor \frac{N(x)}{2} \right\rfloor$ on X_1, $A(x) < \left\lfloor \frac{N(x)}{2} \right\rfloor$ on X_2, and $A(x) > \left\lfloor \frac{N(x)}{2} \right\rfloor$ on X_3, where $X = X_1 \cup X_2 \cup X_3$. Then $A \subseteq N \Theta A$ on $X_1 \cup X_2$ and $N \Theta A \subseteq A$ on X_3.

Proof: If $A(x) = \left\lfloor \frac{N(x)}{2} \right\rfloor$ on X_1 and $A(x) < \left\lfloor \frac{N(x)}{2} \right\rfloor$ on X_2 then $A(x) = \left\lfloor \frac{N(x)}{2} \right\rfloor$ on $X_1 \cup X_2$ that implies by applying Proposition 3.2 we have $A \subseteq N \Theta A$ on $X_1 \cup X_2$.

Again by using Proposition 3.3., we get $N \Theta A \subseteq A$ on X_3.
Proposition 3.5: Let \(A \subseteq [X]^w \) be a mset such that
\[
A(x) \leq \left[\frac{W}{2} \right]
\]
for every \(x \in X \). Then \(A \subseteq A' \). The inclusion may be proper.

Proof: \(A'(x) = w - A(x) \geq w - \left[\frac{W}{2} \right] \geq \left[\frac{W}{2} \right] \geq A(x) \). This shows that \(A \subseteq A' \). If \(w=5 \) and if \(A = ab^2c \) then the condition
\[
A(x) \leq \left[\frac{W}{2} \right]
\]
is satisfied and \(A = ab^2c \subseteq a^2b^2c^2 = A' \) so that \(A \) is a part of \(A' \). This proves the proposition.

Proposition 3.6: Let \(A \subseteq [X]^{**} \) be a mset such that \(A(x) > \left[\frac{W}{2} \right] \) for every \(x \in X \). Then \(A' \subseteq A \). The inclusion may be proper.

Proof: \(A'(x) = w - A(x) < w - \left[\frac{W}{2} \right] < \left[\frac{W}{2} \right] + 1 < A(x) + 1 \).
Therefore \(A'(x) \leq A(x) \) that implies \(A' \subseteq A \). If \(w=5 \) and \(A = a^2b^2c^2 \) then the condition
\[
A(x) > \left[\frac{W}{2} \right]
\]
is satisfied and \(A' = a^2b^2c^2 \subseteq a^2b^2c^2 = A \) so that \(A' \) is a part of \(A \). This proves the proposition.

Proposition 3.7: Let \(A \subseteq [X]^{***} \) be a mset such that
\[
A(x) = \left[\frac{W}{2} \right] \] on \(X_1 \), \(A(x) < \left[\frac{W}{2} \right] \) on \(X_2 \) and \(A(x) > \left[\frac{W}{2} \right] \) on \(X_3 \)
where \(X = X_1 \cup X_2 \cup X_3 \). Then \(A \subseteq A' \) on \(X_1 \cup X_2 \) and \(A' \subseteq A \) on \(X_3 \).

Proof: If \(A(x) = \left[\frac{W}{2} \right] \) on \(X_1 \) and if \(A(x) < \left[\frac{W}{2} \right] \) on \(X_2 \), then
\[
A(x) \leq \left[\frac{W}{2} \right] \] on \(X_1 \cup X_2 \) that implies by applying Proposition 2.2.5 we have \(A \subseteq A' \) on \(X_1 \cup X_2 \). Again by using Proposition 2.2.6., we get \(A' \subseteq A \) on \(X_3 \).

IV. PROPERTIES RELATED TO TOPOLOGY

Proposition 4.1: Every topology on \(X \) can be considered as a \(m \)-topology over \(X \).

Proof: Follows from the fact every subset \(A \) of \(X \) can be considered as a mset by defining \(A(x) = 1 \) for every \(x \in A \) and \(= 0 \) for every \(x \in X \setminus A \).

Proposition 4.2: If \(\tau \) is a \(m \)-topology on a mset \(N \) over \(X \) then \(\tau^* = \{ A^*: A \in \tau \} \) is a topology on \(N^* \).

Proof: Follows from the following facts \((\mathcal{G})^* = \mathcal{G}, (A \cap B)^* = A^* \cap B^* \) and \((\cup \{ A: A \in \Omega \})^* = \cup \{ A^*: A \in \Omega \} \).

Proposition 4.3: If \(\tau \) is a \(m \)-topology on a mset \(N \) over \(X \) then \(|\tau^*| \leq |\tau| \) and strict inequality will hold in certain cases.

Proof: For each open set \(G \) in \(\tau \), there is an open mset \(A \in \tau \) with \(G = A^* \). Therefore \(|\tau^*| \leq |\tau| \). However the inequality is strict as shown below.

Let \(N = a^2b^2c^2 \) and \(\tau = \{ X, N, ab, a^2b^3 \} \). Then \(\tau \) is a \(m \)-topology on \(N \). Let \(\tau^* = \{ X, N, a^2, a^2b \} \) that implies \(|\tau^*| < |\tau| \). Again if \(\tau = \{ X, N, a^2, a^2b \} \) then \(\tau^* = \{ X, N, a^2, a^2b \} \) so that \(|\tau^*| = |\tau| \).

Proposition 4.4: Let \(\eta \) be a topology on \(X \). Then there is a \(m \)-topology \(\tau \) over \(X \) such that \(\tau^* = \eta \).

Proof: Fix a natural number \(w \). For each \(A \in \eta \) with \(A \neq \emptyset \) or \(A = X \), the msets \(M_{A\Omega i}, i=1,2,3,\ldots,w \) are defined as \(M_{A\Omega i}(x) = i \) when \(x \in A \) and zero otherwise. Then it is easy to see that \((M_{A\Omega i})^* = A \).

Let \(M_{S*} \) be defined by \(M_{S*}(x) = w \) for every \(x \in X \) that implies \((M_{S*})^* = X \). Let \(S \) be a collection of msets formed by choosing exactly one mset from \(\{ M_{A\Omega i}, i=1,2,3,\ldots,w \} \) for every \(A \in \eta \) with \(A \neq \emptyset, A \neq X \). Clearly each member of \(S \) is a mset of \(M_{S*} \). Then \(S \cup (M_{S*}) \) will generate a \(m \)-topology \(\tau \subseteq [X]^* \). Clearly \(\tau^* = \eta \).

Corollary 4.5: Let \(\eta \) be a topology on \(X \). Then there are infinitely many \(m \)-topologies whose support topologies are equal to \(\eta \).

Proof: Follows from Proposition 4.4.

Proposition 4.6: Let \(\tau \) be a \(m \)-topology on a mset \(N \) over \(X \) and \(A \) be a msubset of \(N \). Then \((Int)\) \(\ast = IntA^* \). (\(Cl \) \(\ast \) \(\neq ClA^* \)) the inclusion in \((ii) \) can be proper.

Proof: It follows from the definition of the interior that \((IntA)\ast \subseteq IntA^* \). To prove the reverse inclusion, let \(x \in IntA^* \). Then \(x \in IntA^* \) for some \(U \in \tau \). Therefore \(U \in B^* \) for some \(B \in \tau \) that implies \(x \in B^* \subseteq A^* \). This proves that \(x \in B \subseteq A^{**} \) which means \(x \in (IntA)^* \). This proves (i). Now \((ClA)^* = (N \setminus IntA) \ast \subseteq N^* \setminus IntA^* \). If \((ClA)^* \neq ClA^* \) then \(Int(N \setminus IntA) \ast \subseteq N^* \setminus Int\{N \setminus IntA\} \ast \). Replacing \(A \) by \(N \) and \((ClA)^* \neq N^* \setminus IntA^* \). The inclusion in (ii) is proper as shown below.

Let \(N = a^2b^2c^2 \) be a mset over \(X = \{ a, b, c \} \). Then \(\tau = \{ X, N, b^2c^2 \} \) is an \(m \)-topology on \(N \) and \(\tau^* = \{ X, \{ a \} \} \). This is the corresponding root topology on \(N^* \).

Let \(A = a^2b^2c^2 \). Then it is easy to see that \((ClN)\ast = \{ a, b, c \} \) and \(N^* \setminus IntA^* = \{ a \} \). This proves (ii) and (iv).

Clearly \((ClA)^* = \{ a, b, c \} \) and \(ClA^* = \{ a \} \) if \(B = a^2 \) then \((ClB)^* = \{ a, b, c \} \) and \(ClB^* = \{ a \} \). This proves (iii).

V. CONCLUSION

The properties that are related to combinatorics and topology are investigated in the domain of multisets.
REFERENCES