A novel underwater Image Enhancement technique

Alpana Sharma, Venkatadri Marriboyina, Kamlesh Gupta

Abstract Image enhancement intensifies the information content of the image by accentuates the image edges and alters the visual impact of the observer. The contrast and sharpness of the images captured in underwater in general significantly deteriorates and diminish caused by the less perceptibility of the image due to the water medium's physical properties. In this work, we propose a novel underwater image enhancement technique by review the existing underwater enhancement methods. The proposed algorithm tested on standard underwater image enhancement methods with their standard parameters. The result shows the proposed method is better than standard algorithms and techniques.

Index Terms: Underwater image, Fuzzy Intensification Operator, Discrete Cosine Transform.

I. INTRODUCTION

Image enhancement is to bring more visibility to the image and make it more appropriate to the required application. In today's scenario, the process of underwater image enhancement becomes an important area of study. Image enhancement intensifies the information content of the image by accentuates the image edges and alters the visual impact of the observer. The contrast and sharpness of the images captured in underwater suffers from poor colour contrast and poor visibility. Moreover, the quality of underwater images deteriorates due to the physical properties of the water medium, light scattering, reflection, and becomes more and more less visible as water depth increases. Hence this paper presents the literature review of the underwater image enhancement techniques, further a novel method devised for underwater image enhancement technique with comparative result analysis.

II. LITERATURE REVIEW

The recent advancement in computer vision technology, hardware, software and algebraic methods has led to improvements in several real time application areas includes underwater image enhancement. The primary objective of underwater image enhancement is to remove the scattered

Revised Manuscript Received on April 06, 2019.

Retrieval Number: F3185048619/19©BEIESP

MsAlpana Sharma, Computer Science and Engineering, Amity University Madhya Pradesh, Gwalior, India.

Dr. Venkatadri Marriboyina, Computer Science and Engineering, Amity University Madhya Pradesh, Gwalior, India.

Dr. Kamlesh Gupta, Associate Professor in the Department of Information Technology in,RustamJi Institute of Technology, Gwalior, India.

light effect and correct the colour cast in underwater [1]. Among various underwater image enhancement algorithms, Traditional Image Enhancement techniques, prior model image enhancement methods and the latest learning methods are most popular methods. The following table shows a review on present work and their advantages or limitations.

Table I: Literature Review

References	Methods /	Advantages/		
	Techniques Applied	Limitations		
[1]	Depth estimation	Sometimes these		
	method and adaptive	methods are		
	attenuation curve for	invalid due to the		
	prior model-based	complex		
	methods	environment and		
		severe color cast.		
[2],[9]	The morphological	Obtains the		
	operator is used to	background		
	detect background	information to		
	and contrast	provide the clear		
	enhancement is	scene in the		
	carried out by using	images with poor		
	two operators based	light.		
[2]	on weber's law Recursive Mean	Selection of		
[3]				
	Separate Histogram	recursion level must be		
	Equalization (RMSHE)	must be automated		
[4]-[6]	Block based DCT			
[4]-[0]	coefficients for	The coarse quantization		
	enhancing color	coefficients		
	images	technique results		
	mages	visible artefacts		
[7]	Histogram	The variations of		
[,]	equalization	gray distribution		
	Technique	in the histogram		
	1	causes side effects		
		in this technique		
[8]	Tuned tri-threshold	Applicable to the		
	fuzzy intensification	images in dusty		
	operator	weather only		
[10]-[16]	Contrast	Computational		
	enhancement	complexity is		
	technique using	more due to over		
	histogram	exposed in images		
	equalization and	with noise in the		
	fusion based	input images		
	methods	along with the		
		image features.		
[17]	Equal area dualistic	Gray level		
	sub-image	distribution in the		
	histogram	histogram		
	equalization (DSIHE) technique	rechifiques causes		
	(DSIHE) technique	side effects		

A novel underwater Image Enhancement technique

[18]	Minimum mean	Side effects due to		
	brightness error	the gray level		
	bi-histogram	distribution		
	equalization	problem in the		
	(MMBEBHE)	histogram		
[19]-[20]	Dehazing algorithm	Greenish cast		
		In enhanced		
		images		
[21]	GW (Gray World)	GW method only		
	method	applies in RGB		
		color space to		
		remove the color		
		cast may not		
		produce a visually		
		pleasing image		
[22]-[24]	Contrast limited	These methods		
	adaptive histogram	improve the		
	equalization	image quality, but		
		noise		
		amplification		
		causes color		
		distortion		
[25]	Deep learning Based	Domain		
	Methods	knowledge and		
		learning strategy		
		applied for haze		
		removal.		

From the above-mentioned table I, the histogram equalization methods suffer from the more exposed areas of the images dominates the lower parts of the images. The traditional model methods suffer from noise amplification and color distortion in images. To overcome the afore mentioned limitations, we propose a novel method, employs a partition operation over the input histogram to divide in to sub histograms. Each sub-histogram goes through Histogram Equalization and is allowed to occupy a specified gray level range in the enhanced output image. Thus, a better overall contrast enhancement is gained by our proposed Dynamic Histogram Enhancement technique (DHET). The proposed technique ensures the consistency in preserving image details and is free from any side effects. The overall work is summarized as follows, Section 2 gives the proposed methodology which is used in this work. Section 3 reviews the standard parameters. The experimental results show the accuracy of proposed algorithm in section 4 and finally section 5 gives conclusion of this work.

III. PROPOSED HYBRID ALGORITHM

The proposed hybrid algorithm works in three different phases.

A.Block phase:

The color image is converted into gray image, which is divided into n x n blocks

B.DCT phase:

The Discrete Cosine Transform (DCT) method is used for enhancing local background illuminations of underwater image blocks that are created in first phase and then combined all the blocks to make a single image.

C.Tuned tri-threshold intensification operator phase:

Tuned tri-threshold intensification operator technique is used to improve the intensity of color image. This technique starts with the first tuning parameter, i.e. zeta, which is used to control the processed image color fidelity. After that the processed image is disintegrated into R, G and B channels. Now to calculate the value of intensification operator, two factors, named as the value of Γ and membership function, are required. Γ is basically represents the threshold value of the operator and the member function is used to set the pixel's values of a given channel between the range of 0 to 1.

The proposed algorithms steps are as follows:

Step 1: Input RGB color image.

Step 2: Convert RGB image into YCbCr image for better processing.

Step 3: Define block size [Here block size=8 are taken].

Step 4: Convert whole image into number of blocks.

Step 5: Adjust local background illumination using DCT.

Step 6: Merge all blocks of an image.

Step 7: Now convert YCbCr image into RGB color image.

Step 8: Set the value of zeta =0.5

Step 9: Convert the RGB image into its RGB layers

Step 10: Set the value of Γ_R , Γ_G and Γ_B into 0.5, 0.4 and 0.6 respectively.

Step 11: Compute the value of membership functions for each channel, following formulas are used-

fred
$$f_{red} = \frac{[r - \min(r)]}{[\max(r) - \min(r)]}$$

$$f_{grn}$$

$$[a - \min(a)]$$
(3)

$$f_{grn} = \frac{[g - \min(g)]}{[\max(g) - \min(g)]}$$
(4)

$$J_{grn} = \frac{[g - \min(g)]}{[\max(g) - \min(g)]}$$

$$f_{blu} = \frac{[b - \min(b)]}{[\max(b) - \min(b)]}$$
(5)

Here f_{red} , f_{grn} , f_{blu} represents the membership function's output for red, green and blue channels and {max, min} represent the maximum and minimum pixel values of input channels.

Step 12: Applied intensification operator by using following formulas-

$$\begin{split} K_{red} &= 2* \left(f_{red}\left(x,y\right)\right)^{2}, if \ f_{red}\left(x,y\right) \leq \tau_{red}\left(6\right) \\ &\quad Otherwise \ 1-2* \left(1-f_{red}\left(x,y\right)\right)^{2} \\ K_{grn} &= 2* \left(f_{grn}\left(x,y\right)\right)^{2}, \ if \ f_{grn}\left(x,y\right) \leq \tau_{grn}\left(7\right) \\ &\quad Otherwise \ 1-2* \left(1-f_{grn}\left(x,y\right)\right)^{2} \\ K_{blu} &= 2* \left(f_{blu}\left(x,y\right)\right)^{2}, \ if \ f_{blu}\left(x,y\right) \leq \tau_{blu}\left(8\right) \\ &\quad Otherwise \ 1-2* \left(1-f_{blu}\left(x,y\right)\right)^{2} \end{split}$$

Here K_{red} , K_{blu} , K_{grn} represents the processed channels by intensification operator.

Step 13: Concatenate all channels to make a single processed RGB image.

Step 14: Finally received enhanced output image

IV. PERFORMANCE PARAMETER

A. Peak signal to noise ratio (PSNR) and MSE

The PSNR (peak signal to noise ration) and MSE (mean square error) can evaluate the effectiveness of processed image.

$$PSNR = 10 \log_{10} \frac{255^2}{MSE} \dots {9}$$

Where

MSE

$$= \frac{\sum_{i=1}^{W} \sum_{j=1}^{H} (X_{ij} - X_{ij}^{\sim})}{W \times H} \dots$$
Where X_{ij} represents the original pixel and X_{ij}^{\sim} for the geometric drivel and the size of all images are $W \times H$

reconstructed pixel and the size of all images are $W \times H$.

B. Entropy

The value of entropy is calculated by using following formula:

$$H(m) = \sum_{i=0}^{M-1} p(m_i) \log \frac{1}{p(m_i)} \dots$$
 (11)

WhereM denotes the total number of symbols and p(m_i) is for the probability of occurrence of symbol mi.

C. Horizontal and vertical correlation

To calculate the correlation among two different horizontally and vertically adjacent pixels in enhanced image and original image respectively, the following two formulas

$$Cov(x,y) = E(x - E(X))(y - E(y))...$$
 (12)

$$Cov(x,y) = E(x - E(X))(y - E(y)) \dots$$

$$r_{xy} = \frac{Cov(x,y)}{\sqrt{D(x)}\sqrt{D(y)}} \dots$$
(12)

For numerical computation, the following formulas are used.

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} x_i \dots \dots \dots$$
 (14)

$$D(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - E(x)) (y - E(y)) \dots$$
 (15)

$$Cov(x,y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - E(x)) (y_i - E(y))....(16)$$

Here where x and y represent two adjacent pixel values of an image.

V. EXPERIMENTAL RESULTS

The proposed novel underwater image enhancement algorithm tested with standard parameters and standard existing algorithms.

The following tables present the comparative analysis performed to check the efficiency of proposed technique with existing standard methods and parameters.

Table II: Comparison between proposed Algorithm with existing standard Algorithms.

Input Image	Paramet ers	Block Based Schem e	Improv ed CLAH E scheme	Contrast Adjustment Scheme	Propo sed Sche me
	PSNR	8.050	8.301	9.887	20.896
	MSE	0	0.83635	0.869091	0.6154
THE THE	Entropy	0.7966	0.44268	0.702905	0.0350
	Horizont al	0.9406	0.93603	0.929246	0.8680
THE REAL PROPERTY.				<u> </u>	

al Number: F3185048619/19©BEIESP

		orrelatio								
		value Vertical								
	correlation value		0.	.9548	0.	95167		0.941855		0.8592
	n value PSNR		8	3.022	,	3.376		9.568		21.078
	H	MSE	C	0		88357		0.963373		0.9117
	F	Entropy	0	.9327	_	21154		0.876366		0.0308
12 1100	_	orizont	-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	2110.		0.070200		0.0200
d	co	al orrelatio n value	0.9254		0.92086			0.922474		0.8671
	cc	Vertical orrelatio orrelatio	0.	.9476	0.	94014		0.928704		0.8427
A CHAIN		PSNR	8.022		8.318			9.982		21.046
		MSE		0		85948		0.859831		0.7928
WALLS TO BE	E	intropy	0.	.9151	0.	10036		0.658423		0.0315
	co	forizont al orrelatio n value	0.9364		0.	0.95205		0.91087		0.8273
A	cc			0.9517		0.95550		0.94106		0.8598
F-100 N	ľ	n value								
		PSNR		8.03	4	8.502		9.327		20.857
		MSE		0		0.8725	59	0.987 022	0	.964816
A COL		Entrop	ntropy		0.9982 68		1		0	.035985
	١	Horizon al correlati n value	io	0.993 34	33	0.9888	33	0.993 278	0	.990902
(A A T		Vertical correlatio n value		0.9944 42		0.98906 5		0.993 258	0.990076	
		PSNR		8.02	2	8.337		9.758		21.533
	10	MSE		0		0.91321 4		0.890 602	0.805952	
		Entropy		0.9984 72		0.13294		0.768 785	0	0.022548 7
		Horizont al correlatio n value		0.9432		0.9341	0	0.936 978	0).860287
		Vertica correlati n value	tical elatio 0.9		12	0.9379	9	0.920 057	0	0.838114

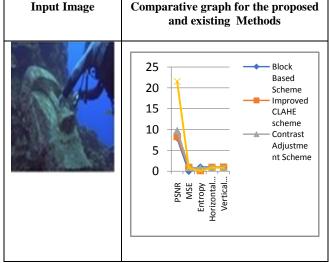
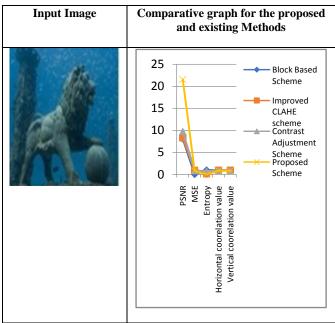
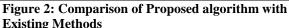
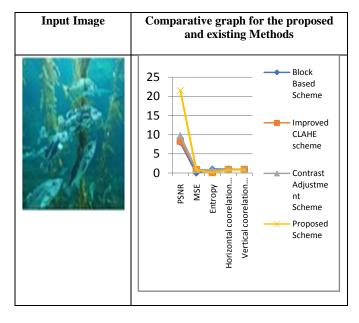




Figure 1: Comparison of Proposed algorithm with **Existing Methods Graph**

Input Image	Comparative graph for the proposed and existing Methods
	Block Based Scheme 15 10 5 NSN WSE Improved CLAHE scheme Contrast Adjustmen t Scheme Proposed Scheme


Figure 3: Comparative Graph of Proposed and Existing Methods Graph.

Input Image	Comparative graph for the proposed
	and existing Methods

Figure 5:Comparative Graph of Proposed and Existing Methods Graph

Figure 4: Comparative Graph of Proposed and Existing Methods Graph

VI. CONCLUSION

In this paper, a novel underwater image enhancement technique DCT schemebased on tuned tri-threshold fuzzy intensification operator has been proposed. The DCT scheme is used for background detection of underwater images and there after image enhancement is done by using tuned tri-threshold based fuzzy intensification operator. Proposed scheme is compared with three existing schemes to check the efficiency of proposed scheme based on five parameters. All the experiments are performed on five different underwater images.

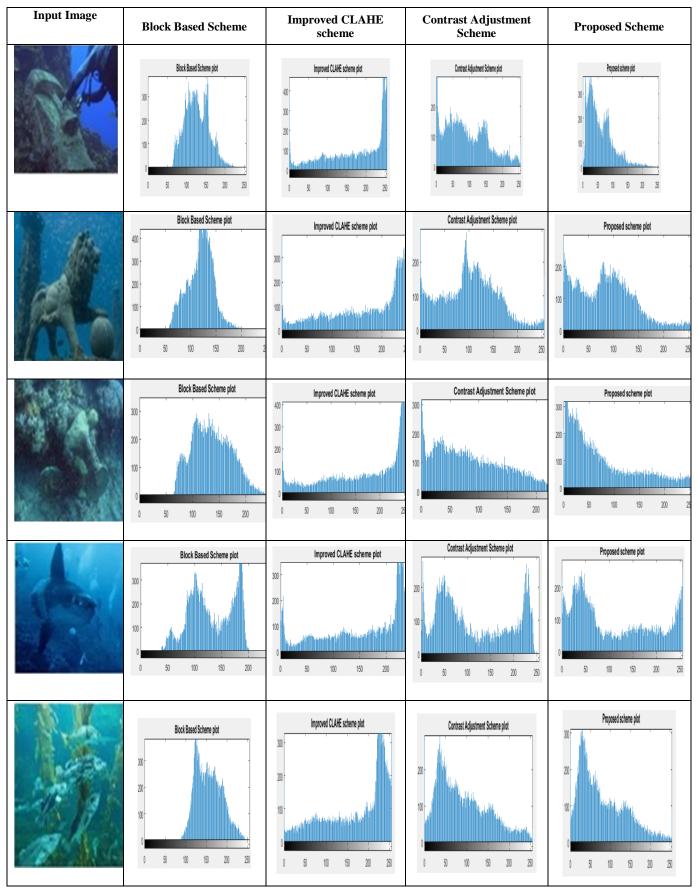


Figure 6:Histograms of image for existing and proposed Method

A novel underwater Image Enhancement technique

REFERENCES

- M S Hitam, W N Yussof, and W H, E A. Awalludin, "Mixture contrast limited adaptive histogram equalization for underwater image enhancement", IEEE International Conference on Computer Applications Technology, 2013
- K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," in Computer Vision and Pattern Recognition, 2009.
- Angélica R. Jiménez-Sánchez "Morphological Background Detection and Enhancement of Images with Poor Lighting" IEEE transaction on Image Processing vol. 18, no. 3, March 2009.
- Soong-Der Chen, "Contrast Enhancement using Recursive Contrast Enhancement using Recursive Mean--Separate Histogram Equalization for Separate Histogram Equalization for Scalable Brightness Preservation Scalable Brightness Preservation", IEEE Transactions on Consumer Electronics 49(4): pp.1301 – 1309, 2003
- Jayanta Mukherjee, and Sanjit K. Mitra, "Enhancement of Color Images by Scaling the DCT Coefficients" IEEE Transactions On Image Processing, Vol. 17, No. 10, October 2008.
- Y. Luo and R. K. Wars, "Removing the blocking arti-facts of block based DCT compressed images," IEEE Trans. Image Process., vol. 12, no. 7, pp. 838–842, Jul. 2003.
- 7. J. Jiang and G. Feng, "The spatial relationships of DCT coefficients between a block and its sub blocks," IEEE Trans. Signal Process, vol. 50, no. 5, pp. 1160–1169, May 2002.
- Zohair Al-Ameen, "Visibility Enhancement for Images Captured in Dusty Weather via Tuned Tri-threshold Fuzzy Intensification Operators", I.J. Intelligent Systems and Applications, 2016, 8, pp. 10-17.
- A. Saradha Devi "A Block Based Scheme For Enhancing Low Luminated Images" The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.3, August 2010.
- R. Schettini and S. Corchs, "Underwater image processing: state of the art of restoration and image enhancement methods," EURASIP J. Adv. Signal Process., 746052, 2010.
- S. C. Pei, Y. C. Zeng, and C. H. Chang, "Virtual restoration of ancient Chinese paintings using coloAr contrast enhancement and lacuna texture synthesis," IEEE Trans. Image Processing, Vol. 13, pp. 416–429, 2004.
- R. C. Gonzalez, R. E. Woods, Digital image processing. 2nd ed. Reading, MA. Addison-Wesley, 1992, pp. 85-103.
- Anil K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ, Prentice-Hall, 1989.
- J. Zimmerman, S. Pizer, E. Staab, E. Perry, W. McCartney, and B. Brenton, "Evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement," IEEE Trans. Medical Imaging, pp. 304–312, 1988.
- Y. T. Kim, "Contrast enhancement using brightness preserving bihistogram equalization," IEEE Trans. Consumer Electron., Vol. 43, No. 1, pp. 1–8, 1997.
- T. K. Kim, J. K. Paik, and B. S. Kang, "Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering," IEEE Trans. on Consumer Electronics, Vol. 44, No. 1, pp. 82–86, 1998.
- J.-Y. Kim, L.-S. Kim, and S. -H. Hwang, "An advanced contrastenhancement using partially overlapped sub-block histogramequalization," *IEEE Transactions on Circuits and Systems for* VideoTechnology, Vol.11, pp. 475 –484, 2001.
- Y. Wang, Q. Chen, and B. Zhang, "Image enhancement based on equalarea dualistic sub-image histogram equalization method," *IEEE Tran. Consumer Electron.*, Vol. 45, No. 1, pp. 68–75, 1999.
- S. D. Chen, and A. R. Ramli, "Minimum mean brightness error bihistogramequalization in contrast enhancement," *IEEE Trans. Consumer Electron.*, Vol. 49, No. 4, pp.1310–1319, 2003.
- C. Li., 'Underwater image Enhancement by Dehazig with Minimum Information Loss and Histogram Distribution prior", IEEE Transactions on Image Processing, vol 25 no 12, pp. 5664-5677, Dec 2016.
- 21. N. Carlevaris-Bianco," Initial results in underwater single image dehazing", in Oceans 2010, IEEE Scattle, 2010, pp. 1-8.
- Siaw-Lang wong, "Underwater Image Enhancement by Adaptive Gray World and Differential Gray-Level Histogram Equalization", Advances in Electrical and Computer Engineering, Vol. 18, 2018, pp.109-116.

- Risheng Liu, "Real -World Underwater Enhancement: Challenging Benchmark and efficient Solutions", journal of latex class files vol. 14 no. 8 august 2015.
- G. Yadav, S. Maheshwari and A. Agarwal, "Contrast limited adaptive histogram equalization-based enhancement for real time video system". ICACCI. 2014.
- H. Zhang and V. M. Patel, "Densely connected pyramid dehazing network," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

AUTHOR PROFILE:

Alpana Sharma, Assistant Professor in Department of Computer Science & Engineering at Institute of Engineering, Jiwaji University Gwalior, MP, India. She published 07 papers in International and National journals and conferences. Her research interests include cryptography and image enhancement. She is pursuing Ph.D. from Amity University Madhya Pradesh, Gwalior, India.

Prof (Dr.) Venkatadri Marriboyina, presently working as Professor and Head Dept of Computer Science and Engineering, in Amity School of Engineering and Technology. Amity University Madhya Pradesh. He has more than 25 research publications in various international journals and conferences. Editor for Smart and Innovative Trends in Next Generation Computing, Vol-827 and vol -828, Communications in Computer and Information Science Series, Springer. (Scopus

Indexed). Guest Editor for "Smart and Innovative Trends for NexGen Computing and Communications", in SCIE and Scopusindexed journals. His research interests in Cloud Computing and Cyber Security, Data Analytics and Artificial Intelligence.

Dr Kamlesh Gupta, Associate Professor in the Department of Information Technology at RustamJi Institute of Technology (RJIT), BSF, Academy Tekanpur Gwalior, MP, India. He has published 25 papers in International and National journals and conferences. His research interest includes cryptography and image processing. He is Ph.D. from RGPV, Bhopal, India. He is a life member of IETE.

