Manmohan Patidar, Ramakant Bhardwaj, Sanjay Choudhary

Abstract: The aim of the present research paper is to use linear programming to find the Minimize the cost of Human nutrition (vitamins and minerals) to fulfill the daily requirements of age 25-50 years. Model formation using mathematical tools and vitamins, minerals with their resources and their utility in human hodies

KEYWORDS: Operation research, linear programming, diet decision, minimization,

#### I. INTRODUCTION

Operation Research is a new science to provide a window for mathematical optimization and Analysis. The methods of a mathematical model like linear, integer, non-linear, Quadratic, Dynamic and goal programming. Use of mathematical tool linear programming to reduce the expenditures and maximize the profit of a large scale industry. The object of the study is to use Linear programming to allocate minimum cost and maximum fulfill the daily requirements of Vitamins, minerals and Nutritional Requirements, such as vitamin A, group of vitamin B, Vitamin C etc and minerals Calcium (Ca), Magnesium (Mg), Potassium (K) and many more. Vitamins are living nutrients that is necessary for life. Energy in the human body can be achieved through human nutrition, minerals, and vitamins correctly, food which we eat and drink. Vitamins and minerals obtained in our diet come obtained from animal and plant sources. Most of the animal and plant get through the soil vitamins and minerals found in the soil depend on their geographical conditions. The nutrients found in them, depending on plant grew and which nutrients and fertilizers it received. Minerals may be present in the potable water we drink, and this also differs from geographic Situation. For details, one can see in table no.1.1 and 1.2. Fluoride (Fluorine) is the most important mineral fluorine is present in a land, water supplements, plants, and animals. Fluorine is Critical for strong bones and teeth. Just a bit of Fluorine is seen in the human body. Fluorine is not included in our study because it is mostly present in great quantity in nature the principal Sources of fluorine were potable water and food such as cheese, tea, and seafood according to Park K. (2011) reported that, Fluorine is the most Abundant element in Nature, and about 96% Of fluoride in the human body is found in bones and Teeth. Fluorine is essential for the normal mineralization of bones and formation of dental Enamel [1].

#### II. Model formation Vitamins and minerals

Model examines only necessary justified vitamins and minerals required by the human body at age of 25-50 years. The ingredients examine are Vitamin-A, Vitamin-B1, Vitamin- B2, Vitamin-B3, Vitamin-B5, Vitamin-B6, Vitamin-B7, Vitamin B9, Vitamin B12, Vitamin-C, Vitamin-D, Vitamin-E, Vitamin-K, Choline, and minerals Calcium (Ca).

Magnesium(Mg),Phosphorus(P),Potassium(K),Chromium(C r),Iodine(I),Iron(Fe)Selenium(Se)and Zinc(Zn). The readily usable food considered contain Papaya, Peanuts, Broccoli, Oranges, Tomatoes, Turnip Greens, Barley, Green beans, Carrots, Egg, Cow's Milk (grass-fed) and Chicken. That the vitamins and minerals requirements will be Explicit in Micrograms, milligrams, and Calorie. Summarizes the amount of each vitamin and minerals in foods and their daily Requirement for better health conditions separate, as well as the united price of these Foods. The goal is to minimize the entire food price. The amount of each vitamin and minerals in foods and their daily Requirement for useful haleness state of a separate, as well as the united price of these Foods. The goal is to minimize the entire food price.

#### Revised Manuscript Received on April 07, 2019.

Manmohan Patidar, Research Scholar, Department of Mathematics Govt. N.M.V. Hosgangabad, (M.P.), India

Ramakant Bhardwaj, Department of Mathematics, Technocrats Institute of Technology Bhopal, India

Sanjay Choudhary, Head, Department of Mathematics, Govt. N.M.V. Hoshangabad (M.P.), India



Table No.1.1: Requirements of the nutrition Vitamins and minerals for a Human being.

|                   | 141                             | ле 110.1.                     | 1. Kequi                                     | rements                                               | of the nut                                      | itamins in                       |                                                      | and min                        | er als 101                                 | a Huili            | an being                          | <b>5•</b>                       |                              |
|-------------------|---------------------------------|-------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------------------------------|--------------------------------|--------------------------------------------|--------------------|-----------------------------------|---------------------------------|------------------------------|
|                   | Papaya<br>fresh<br>276<br>grams | Peanut<br>s<br>,raw<br>36.50g | Brocco<br>li,<br>choppe<br>d<br>156<br>grams | Orang<br>es<br>, fresh<br>1mediu<br>m<br>131<br>grams | Tomato<br>es<br>,sliced,<br>raw<br>180<br>grams | Turnip<br>Greens<br>144<br>grams | Barle<br>y,<br>hulle<br>d ,dry<br>61.33<br>gram<br>s | Green<br>beans<br>125<br>grams | Carrots,<br>Sliced<br>,raw<br>122<br>grams | Egg<br>per<br>100g | Cow's Milk, grass- fed 122 gram s | Chicke<br>n,<br>113.40<br>grams | Requi<br>reme<br>nt<br>Daily |
| Vitamin           | 131.10                          | 0.00                          | 120.74                                       | 14.74                                                 | 74.97                                           | 549.34                           | 0.67                                                 | 43.75                          | 1019.07                                    | 149                | 56.12                             | 6.80                            | 850                          |
| A                 | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg<br>Gr                                       | mcg<br>oup of Vita               | mcg<br>min B                                         | mcg                            | mcg                                        | mcg                | mcg                               | mcg                             | mcg                          |
| Vitamin           |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   |                                 |                              |
| B1<br>Thiami      | 0.06<br>mg                      | 0.23<br>mg                    | 0.10<br>mg                                   | 0.11<br>mg                                            | 0.07<br>mg                                      | 0.06<br>mg                       | 0.40<br>mg                                           | 0.09<br>mg                     | 0.08<br>mg                                 | 0.06<br>mg         | 0.06<br>mg                        | 0.08<br>mg                      | 1.3<br>mg                    |
| n                 | 5                               | 5                             | 5                                            | 5                                                     | mg                                              | 5                                | 5                                                    | m <sub>5</sub>                 | 5                                          | 6                  | 1115                              | mg.                             | 5                            |
| Vitamin<br>B2     | 0.07                            | 0.05                          | 0.19                                         | 0.05                                                  | 0.03                                            | 0.10                             | 0.17                                                 | 0.12                           | 0.07                                       | 1.1                | 0.21                              | 0.13                            | 1.6                          |
| Ribofl            | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | mg                           |
| avin              |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   |                                 |                              |
| Vitamin<br>B3     | 0.99                            | 4.40                          | 0.86                                         | 0.37                                                  | 1.07                                            | 0.59                             | 2.82                                                 | 0.77                           | 1.20                                       | 4.0                | 0.11                              | 15.55                           | 18                           |
| Niaci             | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | mg                           |
| n<br>Vitamin      |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   |                                 |                              |
| B5                | 0.53                            | 0.64                          | 0.96                                         | 0.33                                                  | 0.16                                            | 0.39                             | 0.17                                                 | 0.09                           | 0.33                                       | 1.4                | 0.46                              | 1.090                           | 5.0                          |
| Pantoth<br>enic   | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | mg                           |
| acid              |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   |                                 |                              |
| Vitamin           |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   |                                 |                              |
| B6<br>Pyrid       | 0.10<br>mg                      | 0.13<br>mg                    | 0.31<br>mg                                   | 0.08<br>mg                                            | 0.14<br>mg                                      | 0.26<br>mg                       | 0.20<br>mg                                           | 0.07<br>mg                     | 0.17<br>mg                                 | 0.04<br>mg         | 0.04<br>mg                        | 0.68<br>mg                      | 2<br>mg                      |
| oxine             | mg                              | mg                            | mg                                           | mg                                                    | ing                                             | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | ilig                         |
| Vitamin           | 0.00                            | 6.40                          | 0.00                                         | 1.31                                                  | 7.20                                            | 0.58                             | 1.27                                                 | 1.00                           | 6.10                                       | 16                 | 2.32                              | 0.00                            | 25                           |
| B7<br>Biotin      | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg                                             | mcg                              | mcg                                                  | mcg                            | mcg                                        | mcg                | mcg                               | mcg                             | mcg                          |
| Vitamin           | 102.12                          | 87.60                         | 168.42                                       | 39.30                                                 | 27                                              | 169.92                           | 23.3                                                 | 86.78                          | 23.18                                      | 44                 | 6.10                              | 4.54                            | 500                          |
| B9                | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg                                             | mcg                              | mcg                                                  | mcg                            | mcg                                        | mcg                | mcg                               | mcg                             | mcg                          |
| Folate<br>Vitamin |                                 |                               |                                              |                                                       |                                                 |                                  |                                                      |                                |                                            |                    |                                   | _                               |                              |
| B12               | 0.00                            | 0.00                          | 0.00                                         | 0.00                                                  | 0.00                                            | 0.00                             | 0.00                                                 | 0.00                           | 0.00                                       | 1.5                | 0.55                              | 0.39                            | 2                            |
| Cobala<br>min     | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg                                             | mcg                              | mcg                                                  | mcg                            | mcg                                        | mcg                | mcg                               | mcg                             | mcg                          |
| Vitamin           | 168.08                          | 0.00                          | 101.24                                       | 69.69                                                 | 24.66                                           | 39.46                            | 0.00                                                 | 12.13                          | 7.20                                       | 0                  | 0.00                              | 0.00                            | 80                           |
| С                 | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | mg                           |
| Vitamin<br>D      | 0.00<br>mcg                     | 0.00<br>mcg                   | 0.00<br>mcg                                  | 0.00<br>mcg                                           | 0.00<br>mcg                                     | 0.00<br>mcg                      | 0.00<br>mcg                                          | 0.00<br>mcg                    | 0.00<br>mcg                                | 1.5<br>mcg         | 1.59<br>mcg                       | 0.11<br>mcg                     | 10<br>mcg                    |
| Vitamin           | 0.83                            | 3.04                          | 2.26                                         | 0.24                                                  | 0.97                                            | 2.71                             | 0.35                                                 | 0.56                           | 0.81                                       | 1.6                | 0.13                              | 0.31                            | 15                           |
| E<br>Vitamin      | mg                              | mg                            | mg                                           | mg<br>0.00                                            | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg<br>0.20         | mg                                | mg                              | mg                           |
| Vitamin<br>K      | 7.18<br>mcg                     | 0.00<br>mcg                   | 220.12<br>mcg                                | 0.00<br>mcg                                           | 14.22<br>mcg                                    | 529.34<br>mcg                    | 1.35<br>mcg                                          | 20.00<br>mcg                   | 16.10<br>mcg                               | 0.30<br>mcg        | 0.37<br>mcg                       | 0.34<br>mcg                     | 135<br>mcg                   |
| Choline           | 16.84                           | 19.16                         | 62.56                                        | 11                                                    | 12.06                                           | 0.43                             | 23.65                                                | 21.13                          | 10.74                                      | 285                | 17.45                             | 96.73                           | 550                          |
|                   | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | mg                              | mg                           |
| Cala              | 55.00                           | 22.50                         | (2.40                                        | 50.40                                                 |                                                 | Minerals in 1                    |                                                      | 55.00                          | 40.25                                      | F1                 | 127.0                             | 17                              | 1000                         |
| Calciu<br>m (Ca)  | 55.20<br>mg                     | 33.58<br>mg                   | 62.40<br>mg                                  | 52.40<br>mg                                           | 18.00<br>mg                                     | 197.28<br>mg                     | 20.24<br>mg                                          | 55.00<br>mg                    | 40.26<br>mg                                | 51<br>mg           | 137.8<br>6mg                      | 17<br>Mg                        | 1000<br>mg                   |
| Magnes            | 57.9                            | 61.32                         | 32.76                                        | 13.10                                                 | 19.80                                           | 31.68                            | 81.57                                                | 22.50                          | 14.64                                      | 10                 | 12.20                             | 32.89                           | 350                          |
| ium<br>(Mg)       | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             | mg                                         | mg                 | mg                                | Mg                              | mg                           |
| Phosph            | 27.60                           | 137.24                        | 104.52                                       | 18.34                                                 | 43.20                                           | 41.76                            | 161.9                                                | 36.25m                         | 42.70                                      | 190                | 102.4                             | 258.55                          | 700                          |
| orus (P)          | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | 2mg                                                  | g<br>192.5                     | mg                                         | mg                 | 8mg                               | Mg                              | mg                           |
| Potassiu<br>m (K) | 502.32<br>mg                    | 257.32<br>mg                  | 457.08<br>mg                                 | 237.11<br>mg                                          | 426.60<br>mg                                    | 292.32<br>mg                     | 277.2<br>3mg                                         | 182.5m<br>g                    | 390.4<br>mg                                | 140<br>mg          | 161.0<br>4mg                      | 290.3<br>Mg                     | 4500<br>mg                   |
| Chromi            | 0.00                            | 0.00                          | 18.55                                        | 0.39                                                  | 1.26                                            | 0.00                             | 8.16                                                 | 2.04                           | 0.49                                       | 0.40               | 0.06                              | 0.67                            | 35                           |
| um (Cr)           | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg                                             | mcg                              | mcg                                                  | mcg                            | mcg<br>0.05                                | mcg                | mcg                               | mcg                             | mcg                          |
| Copper            | 0.12                            | 0.42                          | 0.10                                         | 0.06                                                  | 0.11                                            | 0.36                             | 0.31                                                 | 0.07                           | mg                                         | 0.02               | 0.03                              | 0.06<br>Ma                      | 2                            |
| (Cu)              | mg                              | mg                            | mg                                           | mg                                                    | mg                                              | mg                               | mg                                                   | mg                             |                                            | mg                 | mg                                | Mg                              | mg                           |
| Iodin             | 0.00                            | 7.30                          | 3.12                                         | 0.00                                                  | 0.00                                            | 0.00                             | 4.40                                                 | 0.00                           | 0.00                                       | 45                 | 28.06                             | 0.00                            | 150<br>mc                    |
| e (I)             | mcg                             | mcg                           | mcg                                          | mcg                                                   | mcg                                             | mcg                              | mcg                                                  | mcg                            | mcg                                        | mcg                | mcg<br>and Explorin               | mcg<br>a Engine                 | g                            |

| Iron                 | 0.69        | 1.67        | 1.05        | 0.13        | 0.49        | 1.15        | 2.21         | 0.81        | 0.37        | 1.7       | 0.04        | 1.18         | 15                   |
|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-----------|-------------|--------------|----------------------|
| (Fe)                 | mg           | mg          | mg          | mg        | mg          | Mg           | mg                   |
| Seleni<br>um<br>(Se) | 1.66<br>mcg | 2.63<br>mcg | 2.50<br>mcg | 0.65<br>mcg | 0.00<br>mcg | 1.30<br>mcg | 23.12<br>mcg | 0.25<br>mcg | 0.12<br>mcg | 23<br>mcg | 4.51<br>mcg | 31.30<br>mcg | 45<br>mc<br>g        |
| Zinc                 | 0.22        | 1.19        | 0.70        | 0.09        | 0.31        | 0.00        | 1.70         | 0.31        | 0.29        | 1.0       | 0.4         | 1.13         | 15                   |
| (Zn)                 | mg           | mg          | mg          | mg        | 5mg         | Mg           | mg                   |
| Calorie              | 119         | 207         | 55          | 62          | 32          | 29          | 217          | 44          | 50          | 156       | 74          | 187          | 2500<br>calori<br>e  |
| Cost in Rs.          | 7           | 5           | 20          | 5           | 2           | 5.50        | 1.5          | 10          | 3           | 4.5       | 5           | 12           | Mini<br>mizat<br>ion |

Table No 1.2: Details of vitamins, minerals with their resources and their utility In human bodies.

| Vitamins                                                                   | Daily<br>Requir<br>ements                  | Primary<br>sour                                                                                   |                                                                          | Functions                                                                                                                                                                                        | Problems                                                                                          |  |
|----------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
|                                                                            | ements                                     | Products<br>Fruit/Veg<br>etable                                                                   | Products<br>Animal                                                       |                                                                                                                                                                                                  |                                                                                                   |  |
| Vitamin-A<br>CAROTENOIDS<br>/RETINOL<br>Investigated in the years:<br>1913 | More<br>than<br>850Mic<br>rograms<br>(Mcg) | Carrots<br>,Melon<br>,Spinach                                                                     | By-<br>products<br>of milk,<br>yolk of<br>egg,<br>Liver                  | Vitamin-A act a middle party in our<br>Eyes, epidemic, genes, effect,<br>protected system, It is essential during<br>the timely level of pregnancy to<br>protect the underdeveloped embryo.      | approximately ninety percent<br>of vitamin-A exists in the<br>liver,<br>Vision problems in night. |  |
| Vitamin-B1<br>THIAMIN<br>Investigated in the<br>years:1897                 | More<br>than<br>1.3Milli<br>Grams<br>(mg)  | Types of<br>all Grain,<br>almonds,<br>Mixed<br>Nuts and<br>Fruit.                                 | Offal,<br>Fish,<br>Meat.                                                 | Thiamin plays an essential role in<br>nerve and muscle energy, Energy<br>metabolism, Thiamin is sulfur-include<br>vitamin that participating in strength<br>metabolism, transform carbohydrates. | Muscular weakness,<br>enlarged heart.                                                             |  |
| Vitamin-B2<br>RIBOFLAVIN<br>Investigated in the years:<br>1922             | More<br>than<br>1.6<br>milligra<br>ms (mg) | Types of<br>all Grain,<br>vegetables<br>Green<br>leafy,<br>soybeans<br>yeast and<br>almonds.      | Egg, By-<br>products<br>of milk,<br>Meat.                                | Vision, effect and reproduction of an Energy metabolism, Vitamin B2 plays a role in clear vision, Vitamin-B2 acts a role in clear vision. Participating in oxidation-decrease reactions.         | Dermatitis, blurred<br>Vision, growth failure                                                     |  |
| Vitamin-B3<br>NIACIN<br>Investigated in the years:<br>1937                 | More<br>than<br>18<br>milligra<br>ms (mg)  | Types of<br>all<br>Grain<br>cereals,<br>Nuts,<br>Avocados,<br>sunflower<br>seeds, and<br>peanuts. | Milk,<br>Eggs,<br>Fish,<br>Meat                                          | Neurological processes, Energy metabolism                                                                                                                                                        | Pellagra, diarrhea,<br>Blurred vision, Mental<br>disorders.                                       |  |
| Vitamin-B5<br>PANTOTHENIC- ACID<br>Investigated in the years:<br>1931      | More than 5 Milligra ms (mg).              | Tomato,<br>Mushroom<br>, Broccoli.                                                                | Milk,<br>Meat,<br>Fish.                                                  | Blood profile wound healing skins and crest.                                                                                                                                                     | (Rare) Abdominal pain, vomiting, insomnia.                                                        |  |
| Vitamin-B6<br>PYRIDOXINE<br>Investigated in the years:<br>1934             | More than 2milligr ams (mg).               | Mixed<br>Nuts, gram<br>seed,<br>Indian<br>corn,<br>Banana.                                        | Seafood<br>Fish, non-<br>vegetarian<br>items<br>Chicken,<br>and Liver.   | blood structure, DNA<br>(Deoxyribonucleic acid), Nerve<br>activity.                                                                                                                              | Muscular weakness.                                                                                |  |
| Vitamin-B7<br>BIOTIN<br>Investigated in the years:<br>1931                 | More than 25Micr o Grams (Mcg).            | Peanuts,<br>Vegetables<br>, Nuts.                                                                 | Egg, By-<br>products<br>of milk,<br>non-<br>vegetarian<br>item<br>Liver. | Skin, Hair, nails.                                                                                                                                                                               | (Rare) Confusion, muscle pain, dermatitis, hair loss.                                             |  |

| Vitamin-B9<br>FOLIC-ACID<br>(FOLATE)<br>Investigated in the years:<br>1941 | More than 500 Microgr ams (Mcg).               | Peanuts,<br>Oranges,<br>Beans,<br>Leafy<br>vegetables,<br>broccoli.                                                             | By-<br>products<br>of milk,<br>yolk of<br>egg,<br>Liver.                     | DNA synthesis.                                                                       | Megaloblastic anemia, spina bifida.                                                                                                                |
|----------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Vitamin-B12<br>COBALAMIN<br>Investigated in the years:<br>1926             | More than 2Micro Grams (Mcg).                  | By-<br>products of<br>milk.                                                                                                     | Fish,<br>Liver,<br>Meat,<br>Shellfish.                                       | Nerve energy.                                                                        | Pernicious anemia.                                                                                                                                 |
| Vitamin-C<br>ASCORBIC-ACID<br>Investigated in the years:<br>1926           | More than 80milli Grams (mg).                  | Tomato,<br>vegetables<br>Green<br>leafy,<br>Citrus<br>Fruits.                                                                   | By-<br>products<br>of milk,<br>Liver.                                        | Immune system, antioxidant, iron absorption, protection against infections.          | Kidney stones, infections.                                                                                                                         |
| Vitamin-D<br>CALCIFEROL<br>Investigated in the years:<br>1922              | More than 10 Microgr ams (Mcg).                | Mushroom<br>s, With the<br>support of<br>ultraviolet<br>rays<br>(sunlight)<br>Vitamin-D<br>Produced<br>by the<br>human<br>body. | Yolk of<br>egg, Fish<br>Oily.                                                | Kidneys, intestine, bones, formed in (Skin).                                         | Vitamin-D imperfection creates weakness in human bones.                                                                                            |
| Vitamins-E<br>ALPHA-TOCOPHEROL<br>Investigated in the years:<br>1922       | More<br>than<br>15<br>Milligra<br>ms<br>(mg).  | Oils of<br>Vegetable,<br>Fruits,<br>vegetable<br>green<br>Leaves,<br>nuts.                                                      | By-<br>products<br>of milk,<br>Egg.                                          | Cells of Blood, vitamin-E stored in the liver, Antioxidant.                          | Diarrhea, nausea, headaches, muscle weakness.                                                                                                      |
| Vitamins-K<br>PHYLLOQUINONES<br>Investigated in the years:<br>1929         | More<br>than<br>135<br>Microgr<br>ams<br>(Mcg) | Vegetable<br>green<br>Leaves,<br>cauliflower<br>, Oils of<br>Vegetable                                                          | By-<br>products<br>of milk,<br>non-<br>vegetarian<br>item<br>Liver,<br>Meat. | Blood (clotting)                                                                     | Can interfere With anticoagulant medication.                                                                                                       |
| Choline<br>Investigated in the years:<br>1862                              | More<br>than<br>550<br>milligra<br>ms (mg)     | Peanuts                                                                                                                         | Eggs                                                                         | Gene expression, nerve activity, It is needed for neurotransmitter synthesis         | Strictly speaking, Choline is not a vitamin, but an existent nutritious that is often sorted under the B-vitamins, too much quantity liver damage. |
| Calorie                                                                    | More than 2500                                 | Papaya, Peanuts ,Broccoli, Oranges ,Tomatoes , Turnip Greens, Barley, Green bean, Carrots.                                      | Egg,<br>Cow's,<br>Milk<br>Chicken                                            | Contained within food, and used by the human body to maintain daily health and life. | More quantity increases the risk for human health.                                                                                                 |
| Minerals                                                                   | Daily<br>Requir<br>ements                      | Primary<br>sour                                                                                                                 |                                                                              | Functions                                                                            | Use in the body and Risks.                                                                                                                         |
|                                                                            |                                                | Products<br>Fruit/Veg<br>etable                                                                                                 | Products<br>Animal                                                           |                                                                                      |                                                                                                                                                    |



## International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-6, April 2019

|                                                                                                               |                                             | 1                                                                            |                                              |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calcium (Ca) Atomic number: 20 Group 2: LAND MATERIAL ALKALINE Investigated in the years: 1808                | More<br>Than<br>1000<br>Milligra<br>ms (mg) | Green<br>leafy<br>vegetables                                                 | By-<br>products<br>of milk,<br>Fish.         | Bones and teeth.                                                                                                                                  | Calcium is the amplest mineral in the body. Almost 99% stored in human teeth and bones. Calcium is essential at all stages of life, Calcium is important during pregnancy and also support to control blood pressure.                                                                                                                         |
| Magnesium (Mg) Atomic<br>number: 12<br>Group 2: ALKALINE<br>EARTH METAL<br>Investigated in the years:<br>1755 | More<br>than<br>350<br>milligra<br>ms (mg)  | Vegetables Having dark Green colored Leaves, Mixed Nuts, Types Of all Grain. | Seafood                                      | Efficiency metabolism, Bones.                                                                                                                     | More than partial the person's magnesium is found in the bones, where it acts as an essential part in the growth and support of bones, Magnesium poisonousness is scarce.                                                                                                                                                                     |
| Phosphorus (P) Atomic number: 15 Group 15: POLYATOMIC NON-METAL Investigated in the years: 1669               | More<br>than<br>700<br>milligra<br>ms (mg)  | Sunflower seeds                                                              | Eggs,<br>Meat,<br>Milk,<br>Fish,<br>poultry. | Bones and teeth, Efficiency metabolism, Gene expression.                                                                                          | Phosphorus is also part of Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Which are necessary components of all cells, in a kids phosphorus Imperfection may visible as reduced production and needed tooth-bone and growth, Approximately Eighty-five percent of Phosphorus in the body merges with calcium in the teeth and bones. |
| Potassium (K) Atomic number: 19 Group 1: ALKALINE EARTH METAL Investigated in the years: 1807                 | More<br>than<br>4500<br>milligra<br>ms (mg) | Tomatoes,<br>green<br>leafy,<br>grains,<br>pumpkin                           | Meat                                         | Body blood pressure.  Nerve and human muscle activity.                                                                                            | Potassium pumped the cell<br>membrane, potassium failure<br>imperfection the body blood<br>pressure and its increased<br>risk of stones and stroke.                                                                                                                                                                                           |
| Chromium (Cr) Atomic number: 24 Group 6: TRANSITIONAL METAL Investigated in the years: 1798                   | More than 35 Microgr ams (Mcg)              | Broccoli,<br>green<br>beans,<br>nuts, types<br>of all<br>Grain.              | Egg yolk                                     | Metabolizing formality and rich, insulin activity, Chromium support defends blood sugar levels by Enhancing the quickness of the hormone insulin. | High doses have been linked<br>to more serious side effects<br>including blood disorders,<br>liver or kidney damage, and<br>other problems.                                                                                                                                                                                                   |
| Copper (Cu) Atomic number: 29 Group 11: TRANSITIONAL METAL Investigated in the years: 9000 BC                 | More<br>than<br>2<br>milligra<br>ms (mg)    | Nuts, types<br>of all<br>Grain,<br>legumes.                                  | Seafood,<br>organ<br>meats<br>(offal)        | activity metabolism, body blood formation                                                                                                         | Copper imperfection in<br>healthful humans is very<br>scarce. However, those at<br>danger for copper<br>imperfection are individuals<br>with a scarce genetic<br>irregularity.                                                                                                                                                                |
| Fluoride (Fluorine, F) Atomic number: 9 Group 17: HALOGEN Investigated in the years: 1886                     | More than  Micrograms (Mcg)                 | Tea, portable water (if fluoride- containing or fluoridated )                | seafood                                      | Bones and teeth.                                                                                                                                  | Too much fluoride can injure the teeth. Fluor sis only happens during tooth development and cannot be reversed. Construction its Prevention a supercilious antecedence.                                                                                                                                                                       |



| Iodine (I) Atomic number: 53 Group 17: HALOGEN Investigated in the years: 1811                | More<br>than<br>150<br>Microgr<br>ams<br>(Mcg) | Iodized<br>salt                                                                 | Seafood                                | Thyroid function                   | Iodine imperfection has the adverse effects level of growth mostly Injurious to the developing brain, feed insufficient in iodine may arise in higher danger for genian retardation. |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Iron(Fe) Atomic number: 26 , Group 11: TRANSITIONAL METAL Investigated in the years: 5000 BC  | More<br>than<br>15<br>milligra<br>ms (mg)      | Grains,<br>legumes.                                                             | Fish,<br>poultry,<br>red meats.        | Blood production                   | The production of the embryo, Infants and junior kids want additional iron to maintain their fast effect and brain development.                                                      |
| Selenium (Se) Atomic number: 34 Group 16: POLYATOMIC NONMETAL Investigated in the years: 1817 | More<br>than<br>45<br>Microgr<br>ams<br>(Mcg)  | Types of<br>all Grain,<br>nuts,<br>mushroom<br>s, fruits,<br>and<br>vegetables. | Dairy<br>products,<br>seafood,<br>meat | Antioxidant                        | Brittleness of hair and nails.                                                                                                                                                       |
| Zinc (Zn) Atomic number: 30 Group 12: TRANSITIONAL METAL Investigated in the years: 1746      | More<br>than<br>15<br>milligra<br>ms (mg)      | Types of<br>all Grain,<br>mushroom<br>s, legumes.                               | Meat,<br>Shellfish,<br>Poultry.        | Immune activity, Gene declaration. | Zinc is often granted<br>addition therapeutics for<br>diarrhea. Zinc necessarily is<br>higher in periods of<br>development and growth.                                               |

#### III. OBJECTIVE FUNCTION AND CONSTRAINT

To minimize the whole price of vitamin and minerals for food and unit price particularly. The price function (Z) for the 276 grams  $X_1$ , price of Peanuts(raw)36.50g X<sub>2</sub>,price of one of one Papaya fresh  $Broccoli(chopped) 156 grams {\color{blue}X_3}, price \quad of \quad one \quad Oranges(fresh \quad medium) 131 grams {\color{blue}X_4}, price \quad of \quad Tomatoes(sliced \quad raw of the context of the con$ )180grams  $^{X_5}$ ,price of Turnip Greens144grams  $^{X_6}$ , price of Barley(hulled ,dry) 61.33 grams  $^{X_7}$ ,price of Green beans125grams  $X_8$ , price of Carrots(Sliced ,raw)122grams  $X_9$ , price of one Egg per 100g  $X_{10}$ , price of Cow's Milk(grassfed) 122 grams  $X_{11}$ , price of Chicken 113.40grams  $X_{12}$ . The quantity for Vitamin A in this diet content more than 850mcg. Vitamin B1(Thiamin) content more than 1.3gms, Vitamin (B2 Riboflavin) content more than 1.6mg, Vitamin B3(Niacin) content more than 18mg, Vitamin B5(Pantothenic acid) content more than 5mg, Vitamin B6(Pyridoxine) content more than 2mg, Vitamin B7(Biotin) content more than 25mcg, Vitamin B9(Folate) content more than 500mcg, Vitamin B12( Cobalamin) content More than 2mcg, Vitamin C content more than 80mg, Vitamin D content more than 10mcg, Vitamin E content more than 15 mg, Vitamin K content more than 135 mcg, Choline content more than 550 mg, Calorie content more than 2500 Calorie, Calcium(Ca) content more than 1000mg, Magnesium (Mg) content more than 350mg, Phosphorus (P) content more than 700mg, Potassium (K) content more than 4500mg, Chromium (Cr) content more than 35mcg, Copper (Cu) content more than 2mg, Iodine (I) content more than 150mcg, Iron (Fe) content more than 15mg, Selenium (Se) content more than 45mcg, Zinc (Zn) content more than 15mg.



#### **Total formulation of the problem:**

```
MIN\ Z\ = 7\ X_{1} + 5\ X_{2} + 20\ X_{3} + 5\ X_{4} + 2\ X_{5} + 5.50\ X_{6} + 1.5\ X_{7} + 10\ X_{8} + 3\ X_{9} + 4.5\ X_{10} + 5X_{11} + 12X_{12}.
Subject to,
131.10X_1 + 120.74X_3 + 14.74X_4 + 74.97X_5 + 549.34X_6 + 0.67X_7 + 43.75X_8 + 1019.07X_9 + 149X_{10}
+56.12X_{11} + 6.80X_{12} \ge 850,
0.06X_1 + 0.23X_2 + 0.10X_3 + 0.11X_4 + 0.07X_5 + 0.06X_6 + 0.40X_7 + 0.09X_8 + 0.08X_9 + 0.06X_{10}
+0.06X_{11} + 0.08X_{11} \ge 1.3,
0.07 X_1 + 0.05 X_2 + 0.19 X_3 + 0.05 X_4 + 0.03 X_5 + 0.10 X_6 + 0.17 X_7 + 0.12 X_8 + 0.07 X_9 + 1.1 X_{10}
+0.21X_{11} + 0.13X_{12} \ge 1.6;
0.99 X_1 + 4.40 X_2 + 0.86 X_3 + 0.37 X_4 + 1.07 X_5 + 0.59 X_6 + 2.82 X_7 + 0.77 X_8 + 1.20 X_9 + 4.0 X_{10}
+0.11X_{11} + 15.55X_{12} \ge 18;
0.53\,X_{1} + 0.64\,X_{2} + 0.96X_{3} + 0.33\,X_{4} + 0.16X_{5} + 0.39\,X_{6} + 0.17\,X_{7} + 0.09\,X_{8} + 0.33\,X_{9} + 1.4\,X_{10}
+0.46 X_{11} + 1.09 X_{12} \ge 5;
0.10\,X_{1} + 0.13\,X_{2} + 0.31X_{3} + 0.08\,X_{4} + 0.14\,X_{5} + 0.26\,X_{6} + 0.20\,X_{7} + 0.07X_{8} + 0.17X_{9} + 0.04\,X_{10}
+0.04 X_{11} + 0.68 X_{12} \ge 2;
6.40X_2 + 1.31X_4 + 7.20X_5 + 0.58X_6 + 1.27X_7 + X_8 + 6.10X_9 + 16X_{10} + 2.32X_{11} \ge 25;
102.12 X_1 + 87.60 X_2 + 168.42 X_3 + 39.30 X_4 + 27 X_5 + 169.92 X_6 + 23.3 X_7 + 86.78 X_8 + 23.18 X_9 + 44 X_{10}
+6.10 \,\mathrm{X}_{11} + 4.54 \,\mathrm{X}_{12} \ge 500;
1.5X_{10} + 0.55X_{11} + 0.39X_{12} \ge 2;
168.08X_1 + 101.24X_3 + 69.69X_4 + 24.66X_5 + 39.46X_6 + 12.13X_8 + 7.20X_9 \ge 80;
1.5 X_{10} + 1.59 X_{11} + 0.11 X_{12} \ge 10;
```

```
0.83\,X_{1} + 3.04\,X_{2} + 2.26\,X_{3} + 0.24\,X_{4} + 0.97\,X_{5} + 2.71\,X_{6} + 0.35\,X_{7} + 0.56X_{8} + 0.81X_{9} + 1.6\,X_{10}
+0.13 X_{11} + 0.31 X_{12} \ge 15;
7.18\,X_{1} + 220.12\,X_{3} + 14.22\,X_{5} + 529.34X_{6} + 1.35\,X_{7} + 20X_{8} + 16.10\,X_{9} + 0.30\,X_{10} + 0.37\,X_{11} + 0.34\,X_{12} \ge 135;
16.84\,X_{_{1}}+19.16X_{_{2}}+62.56\,X_{_{3}}+11X_{_{4}}+12.06\,X_{_{5}}+0.43X_{_{6}}+23.65\,X_{_{7}}+21.13X_{_{8}}+10.74\,X_{_{9}}+285\,X_{_{10}}
+17.45X_{11} + 96.73X_{12} \ge 550;
55.20X_1 + 33.58X_2 + 62.4X_3 + 52.4X_4 + 18X_5 + 197.28X_6 + 20.24X_7 + 55X_8 + 40.26X_9 + 51X_{10}
+137.86\,\mathrm{X}_{11}\,+17\mathrm{X}_{12}\,\geq 1000,
57.9 X_1 + 61.32 X_2 + 32.76 X_3 + 13.10 X_4 + 19.80 X_5 + 31.68 X_6 + 81.57 X_7 + 22.50 X_8 + 14.64 X_9 + 10 X_{10}
+12.20 \,\mathrm{X}_{11} + 32.89 \,\mathrm{X}_{12} \ge 350,
27.60 \, X_1 + 137.24 \, X_2 + 104.52 \, X_3 + 18.34 \, X_4 + 43.20 \, X_5 + 41.76 \, X_6 + 161.9 \, X_7 + 36.25 \, X_8 + 42.70 \, X_9 + 190 \, X_{10} + 10.00 \, X_{10}
+102.48\,X_{11}\,+258.55\,X_{12}\,\geq 700,
502.32X_{1} + 257.32X_{2} + 457.08X_{3} + 237.11X_{4} + 426.60X_{5} + 292.32X_{6} + 277.2X_{7} + 182.5X_{8} + 390.4X_{9}
+140 X_{10} + 161.04 X_{11} + 290.3 X_{12} \ge 4500,
18.55X_3 + 0.39X_4 + 1.26X_5 + 8.16X_7 + 2.04X_8 + 0.49X_9 + 0.40X_{10} + 0.06X_{11} + 0.67X_{12} \ge 35
0.12\,X_{1} + 0.42\,X_{2} + 0.10\,X_{3} + 0.06\,X_{4} + 0.11\,X_{5} + 0.36\,X_{6} + 0.31\,X_{7} + 0.07\,X_{8} + 0.05\,X_{9} + 0.02\,X_{10}
+0.03 X_{11} + 0.06 X_{12} \ge 2
7.30\,X_{2} + 3.12\,X_{3} + 4.40\,X_{7} + 45X_{10} + 28.06X_{11} \ge 150,
0.69X_{1} + 1.67\ X_{2} + 1.05X_{3} + 0.13\ X_{4} + 0.49X_{5} + 1.15X_{6} + 2.21X_{7} + 0.81X_{8} + 0.37X_{9} + 1.7X_{10}
+0.04X_{11}+1.18X_{12} \ge 15,
1.66\,X_{1} + 2.63\,X_{2} + 2.50\,X_{3} + 0.65X_{4} + 1.30\,X_{6} + 23.12X_{7} + 0.25\,X_{8} + 0.12\,X_{9} + 23\,X_{10}
+4.51\,\mathrm{X}_{11} + 31.30\,\mathrm{X}_{12} \ge 45,
0.22X_{1} + 1.19X_{2} + 0.70X_{3} + 0.09X_{4} + 0.31X_{5} + 1.70X_{7} + 0.31X_{8} + 0.29X_{9} + 1.0X_{10}
+0.4X_{11} + 1.13X_{12} \ge 15,
119X_{1} + 207\,X_{2} + 55X_{3} + 62\,X_{4} + 32\,X_{5} + 29X_{6} + 217\,X_{7} + 44\,X_{8} + 50\,X_{9} + 156\,X_{10}
+\,74X_{11}+187\,X_{12}\geq2500;
X_1 \ge 0, X_2 \ge 0, X_3 \ge 0, X_4 \ge 0, X_5 \ge 0, X_6 \ge 0, X_7 \ge 0, X_8 \ge 0, X_9 \ge 0, X_{10} \ge 0, X_{11} \ge 0, X_{12} \ge 0.
```



| •        | ue: 53.68342<br>10000 4.215713 |     |
|----------|--------------------------------|-----|
| A1 0.00  | 4.213/13                       | X2  |
| 0.000000 | 1.678922                       | V2  |
| 0.000000 | 16.40654                       | Х3  |
| 0.000000 | 3.368036                       | X4  |
|          |                                | X5  |
| 2.711736 | 0.000000                       | X6  |
| 1.222622 | 0.000000                       | X7  |
| 7.283082 | 0.000000                       |     |
| 0.000000 | 8.288752                       | X8  |
| 0.000000 | 0.8265912                      | X9  |
|          |                                | X10 |
| 3.851212 | 0.000000                       | X11 |
| 2.656089 | 0.000000                       |     |
| 0.000000 | 10.41989.                      | X12 |

#### IV. RESULTS AND DISCUSSIONS

Since this model has 12variables LINGO software (version 18.0) is used to get a solution and the results checked by NCSS (version 12.0.10) and TORA Optimization system windows version 2.00. Solving linear programming problem gives a Global optimal solution as

Min Z = Rs 53.68 And for a balanced diet comprised.

- 1. Tomatoes (sliced raw) 488grams required per day.
- 2. Turnip Greens176grams requires per day.
- 3. Barley (hulled, dry) 447 grams per day.
- 4. Egg Required Three to Four per day.
- 5. Cow's Milk (grass-fed) 324 grams per day.

#### REFERENCES

- Park K. Park's text book of preventive and social medicine. Ed 21. Banarasisdas Bhanot Publishers, 1167. Perm Nagar, Jabalpur, India.2011. PP.577.
- Choudhary, Sanjay, Patidar, Manmohan. "Use of linear programming model in the training of human resources in engineering Institutes of Bhopal". Asian Journal of current Engineering and Math's, Vol. 4, No.04 (2015) PP.46-48.
- Choudhary, Sanjay, Patidar, Manmohan. "Solution of nurse scheduling problem in Hospital Management using linear programming". International Journal of Mathematical Archive, Vol. 6, No.12 (2015) PP.23-25.
- Choudhary, Sanjay, Patidar, Manmohan. "Linear Programming and Its Application for
- Preparation of Product Mathri and Namkeen in Small Scale Industries". European Journal of Business and Management, Vol. 10, No.31 (2018) PP.95-104.

