Fuzzy M-open and Fuzzy M-closed Mappings in Šostak’s Fuzzy Topological Spaces

S. Bamini, M. Saraswathi, B. Vijayalakshmi, A. Vadivel

Abstract: We introduce and investigate some new classes of mappings called fuzzy M-open map and fuzzy M-closed map to the fuzzy topological spaces in Šostak’s sense. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy open, fuzzy Θ-semiopen, fuzzy Θ-open, fuzzy δ-semiopen, fuzzy δ-preopen, fuzzy α-open, fuzzy M-open, fuzzy e-open and fuzzy e^*-open mappings.

Keywords and phrases: fuzzy open, fuzzy Θ-semiopen, fuzzy Θ-open, fuzzy δ-semiopen, fuzzy δ-preopen, fuzzy α-open, fuzzy M-open, fuzzy e-open and fuzzy e^*-open mappings.

1. Introduction

Šostak [23] introduced the fuzzy topology as an extension of Chang’s fuzzy topology [1]. It has been developed in many directions [6, 7, 22]. Ganguly and Saha [5] introduced the notions of fuzzy δ-cluster points in fuzzy topological spaces in the sense of Chang [1]. Kim and Park [8] introduced r-δ-cluster points and δ-closure operators in fuzzy topological spaces in view of the definition of Šostak.

In 2008, the initiations of e-open sets, e^*-open sets and α-open sets in topological spaces are due to Erdal Ekici [3], [4]. Sobana et.al [25] defined T-fuzzy e-open sets, fuzzy e-continuity, fuzzy e-open map and fuzzy e^*-closed map in a smooth topological space.

Throughout this paper, nonempty sets will be denoted by X, Y, etc., $I = [0, 1]$ and $I_0 = (0, 1]$. For $\alpha \in I, \alpha(x) = \alpha$ for all $x \in X$. A fuzzy point x_α for $t \in I_0$ is an element of I^X such that

$$x_\alpha(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \notin x. \end{cases}$$

The set of all fuzzy points in X is denoted by $P_\alpha(X)$. A fuzzy point $x_\alpha \in \lambda$ iff $t < \lambda(x)$. A fuzzy set λ is quasi-coincident with μ, denoted by $\lambda \mu q$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ, we denoted $\lambda \mu$. If $A \subseteq X$, we define the characteristic function $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$ All other notations and definitions are standard, for all in the fuzzy set theory.

II. Preliminaries

Lemma 1.1 [23] Let X be a nonempty set and $\lambda, \mu \in I^X$. Then
1. $\lambda q \mu$ iff there exists $x, \alpha \in \lambda$ such that $x \alpha q \mu$.
2. $\lambda q \mu$, then $\lambda \alpha \mu \neq 0$.
3. $\lambda q \mu$ iff $\lambda \leq 1 - \mu$.
4. $\lambda \leq \mu$ iff $x \alpha \in \lambda$ implies $x \alpha \in \mu$ iff $x \alpha q \lambda \mu$ implies $x \alpha q \lambda \mu$.
5. $\lambda \mu$ iff there exists $i_0 \in \Lambda$ such that $x \alpha q \mu i_0$.

Definition 1.1 [23] A function $\tau: I^X \rightarrow I$ is called a fuzzy topology on X if it satisfies the following conditions:
1. $\tau(0) = \tau(1) = 1$.
2. $\tau(\bigvee_{i \in I} \mu_i) \geq \bigvee_{i \in I} \tau(\mu_i)$, for any $\{\mu_i\}_{i \in I} \subseteq I^X$.
3. $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$.

The pair (X, τ) is called a fuzzy topological space (for short, sfts).

Remark 1.1 [20] Let (X, τ) be a fuzzy topological space. Then, for each $r \in I_0$, $\tau_r = \{\mu \in I^X : \tau(\mu) \geq r\}$ is a Chang’s fuzzy topology on X.

Theorem 1.1 [22] Let (X, τ) be a sfts. Then for each $\lambda \in I^X$, $r \in I_0$ we define an operator $C_\tau: I^X \times I_0 \rightarrow I^X$ as follows:

$$C_\tau(\lambda, r) = \lambda \mu \leq \mu, \tau(1 - \mu) \geq r.$$

For $\lambda, \mu \in I^X$ and $r \in I_0$, the operator C_τ satisfies the following conditions:
1. $C_\tau(0, r) = 0$.
2. $\lambda \leq C_\tau(\lambda, r)$.
C_\tau(\lambda, r) \lor C_\tau(\mu, r) = C_\tau(\lambda \lor \mu, r).
4. C_\tau(\lambda, r) \leq C_\tau(\lambda, s) \text{ if } r \leq s,
5. C_\tau C_\tau(\lambda, r), r) = C_\tau(\lambda, r).

Theorem 1.2 [22] Let \((X, \tau) \) be a sfts. Then for each \(r \in I_0, \lambda \in I^X \) we define an operator \(I_\tau: I^X \times I_0 \to I^X \) as
\[I_\tau(\lambda, r) = \{ \mu \in I^X : \lambda \geq \mu, \tau(\mu) \geq r \}. \]

For \(\lambda, \mu \in I^X \) and \(r, s \in I_0 \), the operator \(I_\tau \) satisfies the following conditions:
1. \(I_\tau(1, r) = 1 \)
2. \(\lambda \geq I_\tau(\lambda, r) \)
3. \(I_\tau(\lambda, r) \land I_\tau(\mu, r) = I_\tau(\lambda \land \mu, r) \)
4. \(I_\tau(\lambda, s) \leq I_\tau(\lambda, r) \) if \(s \leq r \)
5. \(I_\tau(\lambda, r), r) = I_\tau(\lambda, r) \)
6. \(I_\tau(1 - \lambda, r) = 1 - I_\tau(\lambda, r) \)

Definition 1.2 [10] Let \((X, \tau) \) be a sfts. Then for each \(\mu \in I^X, x_\mu \in P_\tau(X) \) and \(r \in I_0 \):
1. \(\mu \) is called \(r \)-open \(\tau \)-neighbourhood of \(x_\tau \) if \(x_\tau \mu \) with \(\tau(\mu) \geq r \).
2. \(\mu \) is called \(r \)-closed \(\tau \)-neighbourhood of \(x_\tau \) if \(x_\tau \mu \) with \(\mu = I_\tau(\tau(\mu), r) \).
We denote \(Q_\tau(x_\tau, r) = \{ \mu \in I^X : x_\tau \mu, \mu \geq r \} \), \(R_\tau(x_\tau, r) = \{ \mu \in I^X : x_\tau \mu = I_\tau(\tau(\mu), r) \} \).

Definition 1.3 [10] Let \((X, \tau) \) be a sfts. Then for each \(\lambda \in I^X, x_\tau \in P_\tau(X) \) and \(r \in I_0 \):
1. \(x_\tau \) is called \(r \)-open \(\tau \)-cluster point of \(\lambda \) if for every \(\mu \in Q_\tau(x_\tau, r) \), we have \(\mu \cap \lambda \).
2. \(x_\tau \) is called \(r \)-closed \(\tau \)-cluster point of \(\lambda \) if for every \(\mu \in R_\tau(x_\tau, r) \), we have \(\mu \cap \lambda \).
3. \(\delta \)-cluster operator is a mapping \(D_\tau: I^X \times I_0 \to I^X \) defined as follows: \(\delta C_\tau(\lambda, r) \) and \(D_\tau(\lambda, r) = \{ x_\tau \in P_\tau(X) : x_\tau \text{ is } \tau \text{-}C_\tau \text{-cluster point of } \lambda \} \)

Definition 1.4 Let \((X, \tau) \) be a sfts. For \(\lambda, \mu \in I^X \) and \(r \in I_0 \), \(\lambda \) is called an
1. \(r \)-fuzzy \(\delta \)-semiopen (resp. \(r \)-fuzzy \(\delta \)-semiclosed) [25] set if \(\lambda \leq C_\tau(\delta I_\tau(\lambda, r), r) \) (resp. \(\lambda \leq C_\tau(\delta I_\tau(\lambda, r), r) \)).
2. \(r \)-fuzzy \(\tau \)-preopen (resp. \(r \)-fuzzy \(\tau \)-preclosed) [25] set if \(\lambda \leq C_\tau(\delta I_\tau(\lambda, r), r) \) (resp. \(\lambda \leq C_\tau(\delta I_\tau(\lambda, r), r) \)).
3. \(r \)-fuzzy \(\mu \)-open (resp. \(r \)-fuzzy \(\mu \)-closed) [25] set if \(\lambda \leq I_\tau(\delta C_\tau(\lambda, r), r) \) (resp. \(\lambda \leq I_\tau(\delta C_\tau(\lambda, r), r) \)).
4. \(r \)-fuzzy \(\mu \)-open (resp. \(r \)-fuzzy \(\mu \)-closed) [25] set if \(\lambda \leq I_\tau(\delta I_\tau(\lambda, r), r) \) (resp. \(\lambda \leq I_\tau(\delta I_\tau(\lambda, r), r) \)).
2. \(r \)-fuzzy \(\theta \)-semiopen (resp. \(r \)-fuzzy \(\theta \)-semiclosed) set if
\[
\lambda \leq C_{\tau l}(\lambda, r) \leq \lambda.
\]
3. \(r \)-fuzzy \(\theta \)-preopen (resp. \(r \)-fuzzy \(\theta \)-preclosed) set if
\[
\lambda \leq I_{\tau l}(\lambda, r) \leq \lambda.
\]
Definition 1.9 [27] Let \((X, \tau)\) be a fuzzy topological space. For \(\lambda \in I^X\) and \(r \in I_0\), \(\lambda\) is called an \(r\)-fuzzy \(M\)-open set if
\[
\lambda \leq C_{\tau l}(\lambda, r) \Rightarrow I_{\tau l}(\delta C_{\tau l}(\lambda, r), r).
\]

\(M\)-closed set if
\[
\lambda \geq C_{\tau l}(\delta I_{\tau l}(\lambda, r), r) \land I_{\tau l}(\theta C_{\tau l}(\lambda, r), r).
\]

Definition 1.10 [27] Let \((X, \tau)\) be a fuzzy topological space. For \(\lambda \in I^X\) and \(r \in I_0\),
1. \(M\)-open set if
\[
\lambda \leq C_{\tau l}(\lambda, r) \Rightarrow I_{\tau l}(\delta C_{\tau l}(\lambda, r), r).
\]
2. \(M\)-closed set if
\[
\lambda \geq C_{\tau l}(\delta I_{\tau l}(\lambda, r), r) \land I_{\tau l}(\theta C_{\tau l}(\lambda, r), r).
\]

Theorem 1.4 [27] Let \((X, \tau)\) be a sfts. Let \(f: (X, \tau_1) \rightarrow (Y, \tau_2)\) be a mapping. Then \(f\) is called
1. fuzzy \(M\)-continuous iff \(f^{-1}(\mu)\) is \(r \)-\(M\)-open for each \(\mu \in I^X\) and \(r \in I_0\).
2. \(\theta\)-continuous iff \(f^{-1}(\mu)\) is \(r \)-\(\theta\)-open for each \(\mu \in I^X\) and \(r \in I_0\).
3. \(\theta\)-semicontinuous iff \(f^{-1}(\mu)\) is \(r \)-\(\theta\)-closed for each \(\mu \in I^X\) and \(r \in I_0\).

III. RESULTS

Definition 2.1 Let \((X, \tau_1)\) and \((Y, \tau_2)\) be sfts’s and \(f: (X, \tau_1) \rightarrow (Y, \tau_2)\) be a mapping. Then \(f\) is called
1. fuzzy \(M\)-open mapping iff \(f(\lambda)\) is \(r \)-\(M\)-open set of \(Y\) for each \(\lambda \in I^X\) and \(r \in I_0\) with \(\tau_1(1 - \lambda) \geq r\).
2. fuzzy \(M\)-closed mapping iff \(f(\lambda)\) is \(r \)-\(M\)-closed set of \(Y\) for each \(\lambda \in I^X\) and \(r \in I_0\) with \(\tau_1(1 - \lambda) \geq r\).

Remark 2.1 From the above definitions, it is clear that the following implications are true for
where $fo, f^\delta o, f^\theta o, fso, fp o, fMo, f^\delta o$ and $f^e o$ maps are abbreviated by fuzzy open, fuzzy θ-semiopen, fuzzy θ-open, fuzzy δ-semiopen, fuzzy δ-preopen, fuzzy a-open, fuzzy M-open, fuzzy e-open and fuzzy e^*-open maps respectively.

From the above definitions, it is clear that every fuzzy δ-preopen map is fuzzy M-open map and every fuzzy θ-semiopen map is fuzzy M-open map. Also, it is clear that every fuzzy M-open map is fuzzy e^*-open map and fuzzy e^*-open map. Also, every fuzzy θ-open map, fuzzy δ-open map, fuzzy a-open map is fuzzy M-open map. The converses need not be true in general.

The converses of the above implications are not true as the following examples show:

Example 2.1 Let λ and μ be fuzzy subsets of $X = Y = \{a, b, c\}$ defined as follows $\lambda(a) = 0.5, \lambda(b) = 0.4, \lambda(c) = 0.7$, $\mu(a) = 0.4, \mu(b) = 0.5$, $\mu(c) = 0.2$. Then $\tau, \eta: I^X \to I$ defined as

$$
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \lambda = \lambda, \\
0, & \text{otherwise,}
\end{cases}
\eta(\mu) = \begin{cases}
1, & \text{if } \mu = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \mu = \mu, \\
0, & \text{otherwise,}
\end{cases}
$$

are fuzzy topologies on X and Y. Consider the identity mapping $f: (X, \tau) \to (Y, \eta)$. Take $r = 2$. For any 2-fuzzy open set λ in (X, τ), $f(\lambda) = \lambda$ is $\frac{1}{2}fMo$ set in (Y, η). Then f is fMo-map, but f is not fMo-map, since $f(\lambda) = \lambda$ is not $2fMo$ in (Y, η).

Example 2.2 Let λ and μ be fuzzy subsets of $X = Y = \{a, b, c\}$ defined as follows $\lambda(a) = 0.5, \lambda(b) = 0.4, \lambda(c) = 0.4$, $\mu(a) = 0.5, \mu(b) = 0.3$, $\mu(c) = 0.2$. Then $\tau, \eta: I^X \to I$ defined as

$$
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \lambda = \lambda, \\
0, & \text{otherwise,}
\end{cases}
\eta(\mu) = \begin{cases}
1, & \text{if } \mu = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \mu = \mu, \\
0, & \text{otherwise,}
\end{cases}
$$

are fuzzy topologies on X and Y. Consider the identity mapping $f: (X, \tau) \to (Y, \eta)$. Take $r = 2$. For any 2-fuzzy open set λ in (X, τ), $f(\lambda) = \lambda$ is $\frac{1}{2}fMo$ set in (Y, η). Then f is fMo-map, but f is not fMo-map, since $f(\lambda) = \lambda$ is not $2fMo$ in (Y, η).

Example 2.3 Let λ and μ be fuzzy subsets of $X = Y = \{a, b, c\}$ defined as follows $\lambda(a) = 0.9, \lambda(b) = 0.9, \lambda(c) = 0.9$, $\mu(a) = 0.1, \mu(b) = 0.1$, $\mu(c) = 0.1$. Then $\tau, \eta: I^X \to I$ defined as

$$
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \lambda = \lambda, \\
0, & \text{otherwise,}
\end{cases}
\eta(\mu) = \begin{cases}
1, & \text{if } \mu = \bar{0}o \bar{1}, \\
\frac{1}{2}, & \text{if } \mu = \mu, \\
0, & \text{otherwise,}
\end{cases}
$$

are fuzzy topologies on X and Y. Consider the identity mapping $f: (X, \tau) \to (Y, \eta)$. Take $r = 2$. For any 2-fuzzy open set λ in (X, τ), $f(\lambda) = \lambda$ is $\frac{1}{2}fMo$ set in (Y, η). Then f is fMo-map, but f is not fMo-map, since $f(\lambda) = \lambda$ is not $2fMo$ in (Y, η).

Example 2.4 Let λ and μ be fuzzy subsets of $X = Y = \{a, b, c\}$ defined as follows $\lambda(a) = 0.9$,
\[\lambda(b) = 0.9, \lambda(c) = 0.9, \mu(a) = 0.1, \mu(b) = 0.1, \mu(c) = 0.1. \]

Then \(\tau, \eta : I^X \to I \) defined as

\[
\tau(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } \lambda = \lambda, \\
0, & \text{otherwise},
\end{cases}
\eta(\mu) = \begin{cases}
1, & \text{if } \mu = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } \mu = \lambda, \\
0, & \text{otherwise},
\end{cases}
\]

are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(r = 2 \). For any 2-fuzzy open set \(\lambda \) in \((X, \tau), f(\lambda) = \frac{1}{2}f\Delta_o \) set in \((Y, \eta)\). Then \(f \) is \(f\Delta_o \)-map, but \(f \) is not \(f\Delta_o \)-map, since \(f(\lambda) = \lambda \) is \(f\Delta_o \)-set in \((Y, \eta)\).

Example 2.5 Let \(\lambda, \mu \) and \(\omega \) be fuzzy subsets of \(X = Y = \{a, b, c\} \) defined as follows

\[
\lambda(a) = 0.3, \lambda(b) = 0.4, \lambda(c) = 0.5, \mu(a) = 0.6, \mu(b) = 0.5, \mu(c) = 0.5, \\
\omega(a) = 0.7, \omega(b) = 0.6, \omega(c) = 0.5.
\]

Then \(\tau, \eta : I^X \to I \) defined as

\[
\tau(\omega) = \begin{cases}
1, & \text{if } \omega = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } \omega = \lambda, \\
0, & \text{otherwise},
\end{cases}
\eta(\lambda) = \begin{cases}
1, & \text{if } \lambda = 0 \text{ or } 1, \\
\frac{1}{2}, & \text{if } \lambda = \lambda, \mu, \\
0, & \text{otherwise},
\end{cases}
\]

are fuzzy topologies on \(X \) and \(Y \). Consider the identity mapping \(f : (X, \tau) \to (Y, \eta) \). Take \(r = 2 \). For any 2-fuzzy open set \(\lambda \) in \((X, \tau), f(\lambda) = \lambda \) is 2-fuzzy open in \((Y, \eta)\). Then \(f \) is fuzzy open map, but \(f \) is not \(f\Delta_0 \)-map, since \(f(\lambda) = \lambda \) is not \(f\Delta_0 \)-set in \((Y, \eta)\).

Theorem 2.1 Let \((X, \tau_1)\) and \((Y, \tau_2)\) be sft's and \(f : X \to Y \) be a mapping. Then the following statements are equivalent:

1. \(f \) is a fuzzy \(M \)-open mapping.
2. \(f(\lambda, \tau_1) \leq M_{\tau_2}(f(\lambda), \tau_2) \) for each \(\lambda \in I^X \) and \(r \in I_0 \).
3. \(I_{\tau_2}(f^{-1}(\mu), \tau_2) \leq f^{-1}(M_{\tau_2}(\mu, \tau_2)) \) for each \(\mu \in I^Y \) and \(r \in I_0 \).

Proof. It is obviously

Theorem 2.2 Let \((X, \tau_1)\) and \((Y, \tau_2)\) be sft's and \(f : (X, \tau_1) \to (Y, \tau_2) \) be a fuzzy \(M \)-open (resp. fuzzy \(\delta \)-semiopen, fuzzy \(\delta \)-preopen) mapping. If \(\mu \in I^X \) and \(\lambda \in I^X, \tau_1(1 - \lambda) \geq r, r \in I_0 \), then there exists an \(r, f\Delta_0 \) set \(f\Delta_0 \) set \(\nu \) or \(Y \) such that \(\mu \leq \nu, f^{-1}(\nu) \leq \lambda \).

Theorem 2.3 If \(f : (X, \tau_1) \to (Y, \tau_2) \) be a fuzzy \(M \)-open mapping. Then for each \(\mu \in I^X, r \in I_0, f^{-1}(C_{\tau_2}(\theta \tau_2(\mu, \tau_2), r) \wedge f^{-1}(I_{\tau_2}(\theta C_{\tau_2}(\mu, \tau_2), r)) \leq C_{\tau_1}(f^{-1}(\mu), r)) \).

Hence
Fuzzy M-open and Fuzzy M-closed Mappings in ostak’s Fuzzy Topological Spaces

Fuzzy open set α in X containing $f^{-1}(\mu)$, there exists an r_iM_0 set β of Y containing μ such that $f^{-1}(\beta) \leq \alpha$.

Definition 2.2 A sfts (X, τ) is called $r_{\text{fuzzy}} M T_1$ (resp. $r_{\text{fuzzy}} T_1$) if for every two distinct fuzzy points x, y of X, there exists two $r_{\text{fuzzy}} M$ open sets (resp. r_{fuzzy} open sets) λ, μ such that $x \in \lambda, y \in \mu \in \lambda \setminus y$. If X is not r_{fuzzy}-connected (resp. not r_{fuzzy} connected), then it is r_{fuzzy}- disconnected (resp. r_{fuzzy} disconnected).

Theorem 2.4 If $f: (X, \tau_1) \to (Y, \tau_2)$ be a bijective mapping such that

$$f^{-1}(C_{\tau_2}(\delta I_{\tau_2}(\mu, r), r)) \land f^{-1}(I_{\tau_1}(\delta C_{\tau_1}(\mu, r), r)) \leq C_{\tau_1}(f^{-1}(\mu), r),$$

for each $\mu \in I^Y, r \in I_0$, then f is fuzzy M-open map.

Proof. Let $\lambda \in I^X, r \in I_0$ with $\tau_1(\lambda) \geq r$. Then from the given condition,

$$f^{-1}(C_{\tau_2}(f^{-1}(I_{\tau_1}(\delta C_{\tau_1}(f^{-1}(\lambda), r), r))) \leq C_{\tau_1}(f^{-1}(f([1-\lambda], r)), r),$$

so there exists a finite index set $\{\tilde{I}_1, \tilde{I}_2, \ldots, \tilde{I}_n\}$ such that $f^{-1}(1 - \lambda) \in \tilde{I}_M$ set of Y. Since f is bijective, then $f(\lambda)$ is an r_iM_0 set of Y, therefore f is fuzzy M-open map.

Theorem 2.5 Let (X, τ) and (Y, η) be sfts’s. Let $f: X \to Y$ be a $f M_0$ mapping. Then the following statements hold.

1. If f is a surjective map and $f^{-1}(\alpha) \subseteq f^{-1}(f(\lambda))$ in X, then there exists $\alpha, \beta \in I^Y$ such that $\alpha \subseteq \beta$.

2. $M_{\eta}(MC_{\eta}(f(\lambda), r), r) \leq f(C_{\tau}(\lambda, r))$ for each $\lambda \in I^X$ and $r \in I_0$.

Proof. (i) Let $Y_1, Y_2 \subseteq I^X$ such that $f^{-1}(\alpha) \subseteq Y_1$ and $f^{-1}(\beta) \subseteq Y_2$ such that $Y_1 \cap Y_2$. Then there exist two $r_{\text{fuzzy}} M_0$ sets μ_1 and μ_2 such that $f^{-1}(\alpha) \leq \mu_1 \leq \mu_2 \leq f^{-1}(\beta)$. But f is a surjective map, then $f^{-1}(\alpha) = \alpha \leq f^{-1}(\mu_1) = f^{-1}(Y_1)$ and $f^{-1}(\beta) = \beta \leq f^{-1}(\mu_2) = f^{-1}(Y_2)$. Since $Y_1 \cap Y_2$, then also $f(Y_1 \cap Y_2) = \beta$. Hence $\alpha \leq \beta$ in Y_2. Therefore, $\alpha \subseteq \beta$.

(ii) Since $\lambda \subseteq C_{\tau}(\lambda, r) \subseteq 1$ and f is an fuzzy M-closed mapping, then $f(C_{\tau}(\lambda, r))$ is fuzzy M-closed set in Y. Hence $f(C_{\tau}(\lambda, r)) \subseteq MC_{\tau}(f(\lambda), r), r) \leq f(C_{\tau}(\lambda, r)) < M_{\eta}(MC_{\eta}(f(\lambda), r), r) \leq f(C_{\tau}(\lambda, r))$.

Theorem 2.6 Let (X, τ) and (Y, η) be sfts’s. Let $f: X \to Y$ be a mapping. Then the following statements are equivalent:

1. f is called fuzzy M-closed map.

2. $MC_{\eta}(f(\lambda), r) \leq f(C_{\tau}(\lambda, r))$, for each $\lambda \in I^X$ and $r \in I_0$.

3. If f is surjective, then for each subset μ of Y and each r.
Lindeloff space, then X is r^*-fuzzy compact (resp. r^*-fuzzy Lindeloff).

Theorem 2.8 Let (X, τ_1) and (Y, τ_2) be sfts. If $f: X \to Y$ is a surjective fuzzy M_0-open mapping and Y is r^*-fuzzy M_0-connected space, then X is r^*-fuzzy connected.

Remark 2.2 Let (X, τ_1) and (Y, τ_2) be sfts’s and $f: X \to Y$ be a mapping. The composition of two fuzzy M_0-open mappings need not be fuzzy M-open map as shown by the following example.

Example 2.8 Let λ, ω and μ be fuzzy subsets of $X = Y = Z = \{a, b, c\}$ defined as follows

$\lambda(a) = 0.4$, $\lambda(b) = 0.5$, $\lambda(c) = 0.2$, $\omega(a) = 0.7$, $\omega(b) = 0.1$, $\omega(c) = 0.5$,

$\mu(a) = 0.5$, $\mu(b) = 0.3$, $\mu(c) = 0.2$.

Then τ_1, τ_2 and $\tau_3: X \to I$ defined as

$$
\tau_1(\lambda) = \begin{cases}
1, \text{if } \lambda = \bar{0} \lor \bar{1}, \\
\frac{1}{2}, \text{if } 0 < \lambda < 1, \\
0, \text{otherwise,}
\end{cases} \quad \tau_1(\omega) = \begin{cases}
1, \text{if } \omega = \bar{0} \lor \bar{1}, \\
\frac{1}{2}, \text{if } 0 < \omega < 1, \\
0, \text{otherwise,}
\end{cases} \\
\tau_2(\omega) = \begin{cases}
1, \text{if } \omega = \bar{0} \lor \bar{1}, \\
\frac{1}{2}, \text{if } 0 < \omega < 1, \\
0, \text{otherwise,}
\end{cases} \quad \tau_3(\mu) = \begin{cases}
1, \text{if } \mu = \bar{0} \lor \bar{1}, \\
\frac{1}{2}, \text{if } 0 < \mu < 1, \\
0, \text{otherwise,}
\end{cases}
$$

are fuzzy topologies on X, Y and Z. Consider the identity mapping $f: (X, \tau_1) \to (Y, \tau_2)$ and

$g: (Y, \tau_2) \to (Z, \tau_3)$. Take $\tau = \tau_2$. For any 2-fuzzy open set λ in (X, τ_1), $f(\lambda) = \lambda$ is not 2-M_0-open in (Y, τ_2). Also, for any 2-fuzzy open set ω in (Y, τ_2), $g(\omega) = \omega$ is not 2-M_0-open in (Z, τ_3). Thus f is fuzzy M_0-open map and g is fuzzy M_0-open map. But $g \circ f$ is not fuzzy M_0-open map, as λ is 2-fuzzy open set in (X, τ_1), $(g \circ f)(\lambda) = g(f(\lambda)) = \lambda$ is not 2-M_0-open in (Z, τ_3).

Theorem 2.9 Let $(X, \tau_1), (Y, \tau_2)$ and (Z, τ_3) be sfts mappings, then

1. If f is fuzzy open map and g is fuzzy M_0-open map, then $g \circ f$ is fuzzy M_0-open mapping.
2. If $g \circ f$ is fuzzy M_0-open mapping and f is a surjective continuous map, then g is fuzzy M_0-open map.
3. If $g \circ f$ is fuzzy open mapping and g is an injective M_0-continuous map, then f is fuzzy M_0-open map.

Proof. (i) Let $\mu \in \tau_1$. Since f is fuzzy open map, then $f(\mu)$ is an r^*-fuzzy open set in (Y, τ_2). Since g is fuzzy M_0-open map, then $g(f(\mu)) = (g \circ f)(\mu)$ is r^*-M_0-set in (Z, τ_3). Hence $g \circ f$ is fuzzy M_0-open.

(ii) Let $\mu \in \tau_2$. Since f is fuzzy continuous, then $f^{-1}(\mu)$ is an r^*-fuzzy open set in (X, τ_1). But $g \circ f$ is r^*-M_0 map, then $(g \circ f)(f^{-1}(\mu))$ is r^*-M_0 set in (Z, τ_3). Hence by surjective of f, we have $g(\mu)$ is r^*-M_0 set of (Z, τ_3). Hence, g is fuzzy M_0-open.

(iii) Let $\mu \in \tau_1$ and $g \circ f$ be an fuzzy open map. Then $g(f(\mu)) = (g \circ f)(\mu) \in \tau_3$. Since g is an injective fuzzy M_0-continuous map, hence $f(\mu)$ is fuzzy M_0-open map in (Y, τ_2). Therefore f is fuzzy M_0-open.

IV. CONCLUSION:

In this paper, we introduce and investigate some new classes of mappings called fuzzy M_0-open map and fuzzy M_0-closed map to the fuzzy topological spaces in Ostak’s sense. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between fuzzy open, fuzzy θ-semiopen, fuzzy θ-open, fuzzy δ-semiopen, fuzzy δ- preopen, fuzzy α-open, fuzzy M_0-open, fuzzy θ-open and fuzzy ϑ^*-open mappings.

REFERENCES

3. Erdal Ekici, A Note on α-open sets and ϑ^*-open sets, Faculty of Sciences and Mathematics University of Nis, Serbia, Filomat 22 (1) (2008), 89-96.

AUTHORS PROFILE

S. Bamini,
Department of Mathematics, Kandaswamy Kandar's College, P-velur,
Tamil Nadu-638 182.

M. Saraswathi,
Department of Mathematics, Kandaswamy Kandar's College, P-velur,
Tamil Nadu-638 182.

B. Vijayalakshmi
Department of Mathematics, Government Arts College, Chidambaram,
Tamil Nadu-608 102.

Vadivel
Department of Mathematics, Government Arts College (Autonomous),
Karur, Tamil Nadu-639 005

Retrieval Number G1010058719/19©BEIESP
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication