Finitely Generated L-Slice for a locale L

Sabna.K.S, Mangalambal.N.R

Abstract: The notion of an action of a locale L on a join semilattice J with bottom element θ_J is developed and is utilized to form the entity (σ, J) , which we call L-slice, that has properties which could be studied algebraically as well as topologically. We investigate the properties of L-slice (σ, J) of a locale L. We have proved that the product of two L-slices of a locale is an L-slice. The notion of finitely generated L-slice of a locale L is introduced and we have shown that every finitely generated L-slice (σ, J) , of a locale L with n generators is isomorphic to the quotient slice of the L-slice (Π, L^n)

Keywords: Single phase multilevel inverter, Multi carriers, Sixty Degree PWM, Twenty seven levels, Cascaded multilevel inverter, and Distortion Factor.

I. INTRODUCTION

Among many introductions to topology, a particular view that has arisen in Theo-retical Computer Science starts with the theory of domains as defined by Scott and Strachey [10] to provide a mathematical foundation for semantics of programming languages, establishing that domains could be put into a topological setting. Duality between Frames and topological spaces have been utilized to make a connection between syntactical and semantical approach to logic. But the application of Stone duality in modal logic require a duality for Boolean algebras or distributive lattices endowed with additional operations. This has inspired the concept of action of a locale on a join semilattice introduced in this paper.

In this paper we have taken up the following study which is relevant in the above context. Given a locale L and a join semilattice J with bottom element 0_J , we have introduced a new concept called L-slice of a locale L denoted by $(\sigma,\,J),$ to be an action of the locale L on the join semilattice J together with a set of conditions. The L-slice of a locale L though algebraic in nature adopts topological properties such as compactness of L through the action . The notion of finitely generated L-slice of a locale L is introduced and we have shown that every finitely generated L-slice $(\sigma,\,J)$ of a locale L with n generators is isomorphic to the quotient slice of the L-slice $(\Pi,\,L^n).$

The content of this paper has been divided into three sections. Section 1 includes some preliminary concepts of locale theory required for next sections.

Revised Manuscript Received on May 07, 2019.

Sabna.K.S, Centre for Research in Mathematical Science, St.Joseph's College (Autonomous) Irinjalakuda/ Department of Mathematics, Calicut University/ K.K.T.M. Government College, Pullut, India

Mangalambal N.R. Department of Mathematics, Calicut University/St.Joseph's College, Irinjalakuda India

Section 2 deals with the concept of L-slice of a locale L and its various properties needed for next section. Section 3 explains finitely generated L-slice of a locale L and its properties

II. PRELIMINARIES

Definition 1.1. [9] A frame is a complete lattice L satisfying the infinite distributivity law $\bigvee A \land b = \bigvee \{ a \land b \mid a \in A \}$, for any subset $A \subseteq L$ and any $b \in L$. **Definition 1.2.** [9] A map $f: L \rightarrow M$ between frames L, M preserving all finite meets (including the top 1) and all joins (including the bottom 0) is called a frame homomorphism. A bijective frame homomorphism is called a frame isomorphism.

Remark. The category of frames is denoted by **Frm**. The opposite of category **Frm** is the category **Loc** of locales. We can represent the morphism in **Loc** as the infima -preserving $f: L \rightarrow M$ such that the corresponding left adjoint $f: M \rightarrow L$ preserves finite meet. If we do not refer to the morphisms in the category **Loc** of locales and the category **Frm** of frames, then the objects frames and locales are same. **Examples 1.3.** [9] i. The lattice of open subsets of topological space.

ii.The Boolean algebra B of all regularly open subsets of Real-line,R.

Definition 1.4. [6] A subset I of a locale L is said to be an ideal.if

i. I is a sub-join-semilattice of L; that is $0_L \in I$ and $a \in I$; $b \in I$ implies $a \cup b \in I$; and

ii. I is a lower set; that is $a \in I$ and $b \le a$ imply $b \in I$. $\in I$ If $a \in L$, the set $\downarrow (a) = \{x \in L : x \le a\}$ is an ideal of L. $\downarrow (a)$ is the smallest ideal containing a and is called the principal ideal generated by a. A proper ideal I is prime if $x \in I$ implies that either $x \in I$ or $y \in I$ [6].

III. L-SLICE AND ITS PROPERTIES

Definition 2.1. [10] Let L be a locale with bottom element 0_L , top element 1_L and (σ, J) be a L - slice with bottom element 0_J . By the "action of L on J" we mean a function $\sigma: L \times J \to J$ such that the following conditions are satisfied $1.\sigma(a, x_1 \vee x_2) = \sigma(a, x_1) \vee \sigma(a, x_2)$ for all $a \in L$ and for all $x_1, x_2 \in J$.

2. $\sigma(a, 0_I) = 0_I$ for all $a \in L$.

3. $\sigma(a \sqcap b, x) = \sigma(a, \sigma(b, x)) = \sigma(b, \sigma(a, x))$ for all $b \in L$, $x \in J$.

 $4. \sigma(1_L, x) = x$ and $\sigma(0_L, x) = 0_I$ for all $x \in J$.

 $5.\sigma(a \sqcup b, x) = \sigma(a, x) \vee \sigma(b, x)$, for $b \in L$, $x \in J$.

If σ is an action of the locale L on a join semilattice J, then we call (σ, J) as L-slice.

Next proposition gives sufficient conditon for a subset $S \subseteq O(L)$, the collection of all order preserving maps on L, to be an L-slice.

Proposition 2.2. [10] Let L be a locale, and let S be a set of order preserving maps on L such that: i.

The constant map $0 \in S$ (0 takes everything to 0). Ii. If f; $g \in S$, then $f \lor g \in S$.

iii. For all $a \in L$ and for all $f \in S$, the meet of the constant map a and f is in S (i.e. $f \sqcap a \in S$). Then the map $\sigma : L \times S \to S$ defined by $\sigma (a,f)(x)=f(x) \sqcap a$ is an action of L on S. **Examples 2.3**[10]

1.Let L be a locale and I be any ideal of L. Consider each $x \in I$ and define $\sigma: L \times I \to I$ as $\sigma(a, x) = a \wedge x$, $a \in L$. It can be easily seen that (σ, I) is a L-slice.

2.Let L be a chain with top and bottom elements and J be any join semilattice with bottom element 0_J . Define $\sigma: L \times J \to J$ by $\sigma(a,j) = j$, for every $a \neq 0_L$ and $\sigma(0_L, j) = 0_J$. This is called a trivial L-slice.

3. Any locale L can be viewed as the meet L –slice(\sqcap , L) where the action σ is defined as $\sigma(a, x) = a \sqcap x$.

Proposition 2.4. The product of two L-slices of a locale L is an L-slice.

Proof. Let (σ_1, J_1) , (σ_2, J_2) be two L-slices of a locale L. Since J_1 , J_2 are join semilattices with bottom elements, $J_1 \times J_2$ is a join semilattice with bottom $(0_{J1}, 0_{J2})$. Define σ : L× $(J_1 \times J_2) \rightarrow J_1 \times J_2$ by $\sigma(a,(x,y))=(\sigma_1(a,x), \sigma_2(a,y))$. Then

1. $\sigma(a, (x_1, y_1) \lor (x_2, y_2)) = \sigma(a, (x_1 \lor x_2, y_1 \lor y_2)) = (\sigma_1(a, x_1 \lor x_2), \sigma_2(a, y_1 \lor y_2)) = (\sigma_1(a, x_1) \lor \sigma_1(a, x_2), \sigma_2(a, y_1) \lor \sigma_2(a, y_2)) = (\sigma_1(a, x_1), \sigma_2(a, y_1)) \lor (\sigma_1(a, x_2), \sigma_2(a, y_2)) = \sigma(a, (x_1, y_1)) \lor \sigma(a, (x_2, y_2))$

2. $\sigma(a, (0_{J1}, 0_{J2})) = (\sigma_1(a, 0_{J1}), \sigma_2(a, 0_{J2})) = (0_{J1}, 0_{J2})$

3. $\sigma(a \sqcap b,(x,y)) = (\sigma_1(a \sqcap b,x), \sigma_2(a \sqcap b,y)) = (\sigma_1(a, \sigma_1(b,x)), \sigma_2(a, \sigma_2(b,y))) = \sigma(a, (\sigma_1(b,x), \sigma_2(b,y)) = \sigma(a,\sigma(b,(x,y)))$

 $\begin{array}{lll} 4.\sigma(1_L, & (x,y)) = (\sigma_1(1_L, & x), & \sigma_2(1_L, & y)) = (x,y) \\ \sigma(0_L, (x,y)) = (\sigma_1(0_L, x), \sigma_2(0_L, y)) = (0_{J1}, 0_{J2}) \end{array}$

 $5.\sigma(a \sqcup b, \qquad (x,y)) = \qquad (\sigma_1(a \sqcup b, x), \qquad \sigma_2(a \sqcup b, y))$

=($\sigma_1(a,x) \ _{\vee}\sigma_1(a,y), \ \sigma_2(a,x) \ _{\vee}\sigma_2(a,y)$)=($\sigma_1(a,x), \ \sigma_2(a,x)$) \vee ($\sigma_1(a,y), \ \sigma_2(a,y) = \sigma(a,(x,y)) \vee \sigma(b,(x,y))$

Thus σ is an action on $J_1\times J_2$ and $(\sigma,\,J_1\times J_2$)is a L-slice of locale L.

Definition 2.5. [10] Let (σ,J) be an L-slice of a locale L. A subjoin semilattice J' of J is said to be L-subslice of J if J' is closed under action by elements of L.

Examples 2.6. [10] 1. Let L be a locale and O(L) denotes the collection of all order preserving maps on L. Then $(\sigma, O(L))$ is an L-slice, where $\sigma: L \times O(L) \to O(L)$ is defined by $\sigma(a, f) = f_a$, where $f_a: L \to L$ is defined by $f_a(x) = f(x) \sqcap a$. Let $K = \{ f \in O(L) : f(x) \le x, \forall x \in L \}$. Then (σ, K) is an L-subslice of the L-slice $(\sigma, O(L))$.

2.Let (σ, J) be an L-slice and let $x \in (\sigma, J)$..

Define $\langle x \rangle = \{ \sigma(a, x); a \in L \}$. Then $(\sigma, \langle x \rangle)$ is an L-subslice of (σ, J) and it is the smallest L-subslice of (σ, J) containing x.

Proposition 2.7. [10] The intersection of any family of L-subslices of an L-slice (σ, J) is again an L-subslice of (σ, J) .

Definition 2.8. Let (σ, J) be an L-slice of a locale L. An equivalence relation R on (σ, J) is called an L-slice congruence if

i.xRy implies $x \lor zRy \lor z$ for any $x, y, z \in (\sigma, J)$ ii. xRy implies $\sigma(a, x)R\sigma(a, y)$ for all $a \in L, x, y \in (\sigma, J)$.

Definition 2.9[10] Let (σ, J) and (μ, K) be L-slices. A map $f:(\sigma, J) \to (\mu, K)$ is said to be L-slice homomorphism if i) $f(x_1 \lor x_2) = f(x_1) \lor f(x_2)$, for all $x_1, x_2 \in (\sigma, J)$.

 $\mathrm{ii})f\big(\sigma(a,x)\big)=\mu(a,f(x)) \text{ for all } a\in L \text{ and all } x\in(\sigma,J).$

Examples 2.10. [10] i. Let (σ, J) be an L-slice and (σ, J') be an L-subslice of (σ, J) . Then the inclusion map $i: (\sigma, J') \rightarrow (\sigma, J)$ is an L-slice homomorphism. ii. Let $I = \downarrow (a)$, $J = \downarrow (b)$ be principal ideals of the locale L. Then (σ, I) , (σ, J) are L-slices. Then the map $f: (\sigma, I) \rightarrow (\sigma, J)$ defined by $f(x) = x \cap b$ is an L-slice homomorphism.

Proposition 2.11. Let (σ, J) , (μ, K) be two L-slices of a locale L and let $f: (\sigma, J) \rightarrow (\mu, K)$ be an L-slice homomorphism. Then the relation R on (σ, J) defined by xRy if and only if f(x)=f(y) is a congruence on (σ, J)

Definition 2.12. The L-slice congruence R discussed in proposition 2.11 is called natural congruence associated with the L-slice homomorphism $f: (\sigma, J) \rightarrow (\mu, K)$.

Let R be a congruence on (σ, J) and let J/R denotes the collection of all equivalence classes with respect to the relation R. Then J/R is a join semilattice with bottom element $[0_J]$, where the partial order \leq on J/R is defined by $[x] \leq [y]$ if and only if $x \leq y$ in (σ, J) . In the next proposition, we will show that $(\gamma, J/R)$ is an L-slice where the action $\gamma: L \times J/R \rightarrow J/R$ is defined by $\gamma(a, [x]) = [\sigma(a, x)]$.

Definition2.13.[10] Let (σ, J) , (μ, K) be two L-slices. A map $f:(\sigma, J) \to (\mu, K)$ is said to be an L-slice isomorphism if i) f is one-one

ii) f is onto

iii) *f* is a L-slice homomorphism.

Proposition 2.14. If R is a congruence relation on (σ, J) , then $(\gamma, J/R)$ is an L-slice.

Definition 2.15. Let (σ, J) be an L-slice of a locale L and R be a congruence on (σ, J) . Then the L-slice $(\gamma, J/R)$ described in proposition 2.14 is called quotient slice of L-slice (σ, J) with respect to the congruence R. **Proposition 2.16.** L-slice Isomorphism theorem Let (σ, J) , (μ, K) be two L-slices of a locale L and let $f: (\sigma, J) \rightarrow (\mu, K)$ be an L-slice homomorphism. Let R be the natural congruence associated with the L-slice homomorphism f.

Then the quotient slice $(\gamma, J/R)$ of (σ, J) is isomorphic to the subslice (μ, imf) of the L-slice (μ, K) .

IV. FINITELY GENERATED L-SLICE

The notion of finitely generated L-slice of a locale L is introduced and we have shown that every finitely generated L-slice (σ, J) of a locale L with n generators is isomorphic to the quotient slice of the L-slice (\sqcap, L^n) .

Definition 3.1. Let (σ, J) be an L-slice of a locale L. A subset S of (σ, J) is said to be span of the set $\{x_1, x_2, \dots, x_n\} \subseteq (\sigma, J)$ if each $x \in S$ can be written as $x = \bigvee_{i=1}^{n} \sigma(a_i, x_i)$ where $a_i \in L$.

Proposition 3.2. Let (σ, J) be an L-slice of a locale L and $\{x_1, x_2, \dots, x_n\} \subseteq (\sigma, J)$. Let $S=Spanp(\{x_1, x_2, x_{n}\})$. Then (σ, S) is a subslice of (σ, J) .

Proof: Let $x, y \in S$. Then there is $a_1, a_2, \ldots, a_n, b_1, b_2, b_n \in L$ such that $x = \bigvee_{i=1}^n \sigma(a_i, x_i), y = \bigvee_{i=1}^n \sigma(b_i, x_i).$

$$x \lor y = \bigvee_{i=1}^{n} \sigma(a_i, x_i) \lor \bigvee_{i=1}^{n} \sigma(b_i, x_i)$$

$$= \bigvee_{i=1}^{n} \sigma(a_i, x_i) \vee \sigma(b_i, x_i)$$
$$= \bigvee_{i=1}^{n} \sigma(a_i \sqcup b_i, x_i)$$

 \in S. Therefore S is a subjoin semilattice of (σ, J) .

Let
$$\mathbf{a} \in \mathbf{L}$$
. Then $\sigma(a, x) = \sigma\left(a, \bigvee_{i=1}^{n} \sigma(a_i, x_i)\right) = \bigvee_{i=1}^{n} \sigma(a, \sigma(a_i, x_i)) = \bigvee_{i=1}^{n} \sigma(a \cap a_i, x_i) \in S$.

Hence (σ, S) is a subslice of (σ, J)

Definition 3.3. An L-slice (σ, J) of a locale L is said to be finitely generated if there is a finite subset $S \subseteq (\sigma, J)$ such that $(\sigma, J) = Span(S)$. Elements of S are called generators of the L-slice (σ, J) .

An L-slice (σ, J) of a locale L is said to be generated by n elements if there is a finite subset $S \subseteq (\sigma, J)$ having n elements such that $(\sigma,J)=Span(S)$ and there is no subset $T\subseteq (\sigma, J)$ having less than n elements which spans the L-slice (σ, J) .

Example 3.4. If L is a locale, then (\sqcap, L) is a finitely generated L-slice.

Deftnition 3.5. An L-slice (σ, J) with a single generator x is called cyclic L-slice. (σ, J) is a cyclic L-slice if $(\sigma, \langle x \rangle) = (\sigma, J)$.

Proposition 3.6. Let (σ, J) be an L-slice of a locale L and let S be a finite subset of (σ, J) such that $Span(S)=(\sigma, J)$. Then $Span(T)=(\sigma, J)$ for all subset T of (σ, J) such that $S\subseteq T$.

Proof: Let $S=\{x_1, x_2, ..., x_n\}$ be such that $Span(S)=(\sigma, J)$. Then for any $x \in (\sigma, J), x = \bigvee_{i=1}^n \sigma(a_i, x_i)$. If $z_i \in T$, then $x = \bigvee_{i=1}^n \sigma(b_i, x_i)$, where $b_i = a_i$ if $z_i \in S$ and $b_i = 0_L$ if $z_i \in T - S$. Hence $Span(T)=(\sigma, J)$.

Proposition 3.7. Let (σ, J) and (μ, K) be L-slices of a locale L, and let (σ, J) be finitely generated with generators $\{x_1, x_2, \dots, x_n\}$

 x_2,x_n }. If $f: (\sigma, J) \rightarrow (\mu,K)$ is an onto L-slice homomorphism, then (μ,K) is finitely generated.

Proof: Let $y \in (\mu, K)$. There exist $x \in (\sigma, J)$ such that y=f(x). Since (σ, J) is finitely generated, there is $a_1, a_2, \ldots, a_n \in L$ such that $x = \bigvee_{i=1}^n \sigma(a_i, x_i)$. $y=f(\bigvee_{i=1}^n \sigma(a_i, x_i)) = \bigvee_{i=1}^n f(\sigma(a_i, x_i)) = \bigvee_{i=1}^n \mu(a_i, f(x_i))$.

Therefore $\{f(x_1), f(x_2), \dots, f(x_n)\}$ generates (μ, K) . **Proposition 3.8.** Let (σ, J) be a finitely generated L-slice of a locale L with generators $\{x_1, x_2, \dots, x_n\}$. Then $\varphi: (\sqcap, L^n) \to (\sigma, J)$ defined by $\varphi(a_1, a_2, \dots, a_n) = \bigvee_{i=1}^n \sigma(a_i, x_i)$ is an onto L-slice homomorphism.

Proof. By Proposition 2.4, (Π, L^n) is an L-slice of a locale L.

$$\varphi\left(\bigvee_{i=1}^{n}(a_{1i}, a_{2i}, \dots a_{ni}) = \varphi(\bigvee_{i=1}^{n}a_{1i}, \bigvee_{i=1}^{n}a_{2i}, \dots \bigvee_{i=1}^{n}a_{ni}) \\
= \bigvee_{j=1}^{n}\sigma(\bigvee_{i=1}^{n}a_{ji}, x_{j}) = \bigvee_{j=1}^{n}\bigvee_{i=1}^{n}\sigma(a_{ji}, x_{j}) \\
= \left(\bigvee_{i=1}^{n}\varphi(a_{1i}, a_{2i}, \dots a_{ni})\right)$$

Thus φ preserves join.

$$\varphi\left(a \sqcap (a_1, a_2, \dots a_n)\right) = \varphi(a \sqcap a_1, a \sqcap a_2, \dots a \sqcap a_n)$$

$$= \bigvee_{i=1}^{n} \sigma(a \sqcap a_i, x_i) = \bigvee_{i=1}^{n} \sigma(a, \sigma(a_i, x_i))$$

$$= \sigma(a, \bigvee_{i=1}^{n} \sigma(a_i, x_i)) = \sigma(a, \varphi(a_1, a_2, \dots a_n))$$

Hence φ is an L-slice homomorphism.

Let $y \in (\sigma, J)$. Then $y=V_{i=1}^n \sigma(a_i, x_i)$. So $(a_1, a_2, \dots a_n) \in (\Pi, L^n)$ such that $\varphi(a_1, a_2, \dots a_n) = y$. Hence φ is onto.

Corollary 3.9. Let (σ, J) be a finitely generated L-slice of a locale L with generators $\{x_1, x_2,x_n\}$. Then (σ, J) is isomorphic to the quotient L-slice $(\Pi, L^n/R)$ of the product L-slice (Π, L^n) .

Proof. By proposition 3.8, $\varphi: (\Pi, L^n) \to (\sigma, J)$ defined by $\varphi(a_1, a_2, ... a_n) = \bigvee_{j=1}^n \sigma(a_j, x_j)$ is an onto L-slice homomorphism. Let R be the congruence xRy if and only if $\varphi(x) = \varphi(y)$. Then by isomorphism theorem for L-slices im $\varphi = (\sigma, J)$ is isomorphic to the quotient L-slice $(\Pi, L^n/R)$.

V. CONCLUSION

In this paper we have discussed various topological properties of Lattice.

REFERENCES

- M.F.Atiyah, I.G.Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Company
- 2. G.Birkhoff, Lattice Theory, American Mathematical Society.

Finitely Generated L-Slice for a locale L

- 3. George Gratzer, General lattice theory, Birkhauser, 2003.
- H.Herrlich, G.E.Strecker, Category Theory: An Introduction, Allyn and Bacon, 1973.
- P.T.Johnstone, Stone Spaces, Cambridge University Press, 1982.
- P.T.Johnstone, The point of pointless topology, Bulletin of American Mathematical soci- ety,1983.
- H.Matsumara, Commutative algebra, Addison Wesley Longman 1970.
- 8. C.Musli, Introduction to Rings and Modules, Narosa Publishing House, 1994.
- 9. J.Picado and Pultr, Frames and locales: Topology without points, Front. Math., Springer, Basel, 2012.
- 10. K.S Sabna and N.R Mangalambal, Fixed point with respect to L-slice homomorphism σ_a , Archivum Mathematicum, Masaryk University, Vol 55, Issue 1,.
- Scott and C.Strachey, Towards a mathematical semantics for computer languages, Poceedings of the Symposium on Computers and Automata ,Polytechnic Institute of Brooklyn Press, New York 1971.
- Samson Abramsky, Achim Jung, Domain Theory, Handbook of logic in Computer Science(Vol- 3), Oxford University Press UK. 1994.
- 13. Saunders MacLane, Categories for the working Mathematician ,Springer-Verlag, New York, Inc 1998.
- S. Vickers, Topology via Logic, in: Cambridge Tracts in Theoretical Computer Science, Vol. 5, Cambridge University Press, Cambridge, 1985.

