Logarithmic Mean Labeling of Some Cycle Related Graphs

A.Durai Baskar, A. Rajesh Kannan, R.Rathajeyalakshmi, P. Manivannan

Abstract: A function f is called a logarithmic mean labeling of a graph G(V,E) with p vertices and q edges if $f:V(G) \rightarrow \{1,2,3,...,q+1\}$ is injective and the induced function $f^*: E(G) \rightarrow \{1,2,3,...,q\}$ defined as

$$f^*(uv) = \left\lfloor \frac{f(v) - f(u)}{\ln f(v) - \ln f(u)} \right\rfloor, \text{ for all } uv \in E(G),$$

is bijective. A graph that admits a logarithmic mean labeling is called a logarithmic mean graph. In this paper, we study the logarithmic meanness of some cycle related graphs like the cycle C_n for $n \ge 3$, union of a cycle C_m and a path P_n union of any two cycles C_m and C_n , the graph $C_3 \times P_n$ and the graph $C_n \circ K_1$.

KeyWords: labeling, logarithmic mean labeling, logarithmic mean graph.

I. INTRODUCTION

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with pvertices and q edges. For notations and terminology, we follow [4]. For a detailed survey on graph labeling we refer to [3]. Path on n vertices is denoted by P_n and a Cycle on nvertices is denoted by C_n . $G \odot S_m$ is the graph obtained from G by attaching m pendant vertices at each vertex of G. Let G_1 and G_2 be any two graphs with p_1 and p_2 vertices respectively. Then the cartesian product $G_1 \times G_2$ has $p_1 p_2$ vertices which are $\{(u,v): u \in G_1, v \in G_2\}$ and any two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \times G_2$ if either $u_1 = u_2$ and v_1 and v_2 are adjacent in G_2 or u_1 and u_2 are adjacent in G_1 and $v_1 = v_2$. The study of graceful graphs and graceful labeling methods was first introduced by Rosa [7] and so many authors are working in the area of graph labeling [1,2,5,6], motivated these we introduce a new type of labeling called logarithmic mean labeling.

A function f is called a logarithmic mean labeling of a graph G(V, E) if $f:V(G) \to \{1, 2, 3, ..., q + 1\}$ is injective and the induced

function
$$f^* : E(G) \to \{1,2,3,...,q\}$$
 defined as $f^*(uv) = \left\lfloor \frac{f(v) - f(u)}{\ln f(v) - \ln f(u)} \right\rfloor$, for all $uv \in E(G)$,

is bijective. A graph that admits a logarithmic mean labeling is called a logarithmic mean graph.

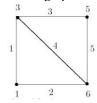


Fig.1 A logarithmic mean graph of $K_4 - \epsilon$

In this paper, we have discussed the logarithmic mean labeling of the cycle C_n for $n \geq 3$, union of a cycle C_m and a path P_n , union of any two cycles C_m and C_n , the graph $C_3 \times P_n$ and the graph $C_n \circ K_1$.

2 Main Results

Theorem 2.1 Every cycle is a logarithmic mean graph. Proof. Let $v_1, v_2, ..., v_n$ be the vertices of the cycle C_n . We define $f:V(C_n) \to \{1, 2, ..., n+1\}$ as follows

We define
$$f: V(C_n) \to \{1, 2, \dots, n+1\}$$
 as follows
$$f(v_i) = \begin{cases} i & 1 \le i \le \left\lfloor \frac{n+2}{\ln(n+3)} \right\rfloor - 1 \\ i+1 & \left\lfloor \frac{n+2}{\ln(n+3)} \right\rfloor \le i \le n. \end{cases}$$

Then the induced edge labeling is as follows: $f^*(v_iv_{i+1}) = \begin{cases} i & 1 \leq i \leq \left\lfloor \frac{n+2}{\ln(n+3)} \right\rfloor - 1 \\ i+1 & \left\lfloor \frac{n+2}{\ln(n+3)} \right\rfloor \leq i \leq n-1 \end{cases}$

and
$$f^*(v_1v_n) = \left[\frac{n+2}{\ln(n+2)}\right]$$
.

Hence, f is a logarithmic mean labeling of the cycle C_n . Thus the cycle C_n is a logarithmic mean graph.

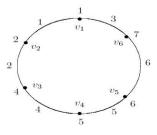


Fig. 2.1 A logarithmic mean labeling of C_6 .

Revised Manuscript Received on May 07, 2019.

A.Durai Baskar, Research Scholar of Mathematics, Bharathiar University, Coimbatore - 641 046, Tamilnadu, India.

A.Rajesh Kannan, Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India.

R.Rathajeyalakshmi , Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India.

P. Manivannan, Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India.

Logarithmic Mean Labeling of Some Cycle Related Graphs

Theorem 2.2 The graph $C_m \cup P_n$ is a logarithmic mean

Proof. Let u_1, u_2, \dots, u_m and v_1, v_2, \dots, v_n be the vertices of the cycle C_m and the path P_n respectively.

We define $f:V(C_m \cup P_n) \to \{1,2,3,...,m+n\}$ as follows:

$$f(u_i) = \begin{cases} m+n+2-2i & 1 \leq i \leq \left\lfloor \frac{m}{2} \right\rfloor \\ n & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \\ n-m-1+2i & \left\lfloor \frac{m}{2} \right\rfloor + 2 \leq i \leq m, \end{cases}$$

 $f(v_i) = i$, for $1 \le i \le n - 1$ and $f(v_n) = n + 1$. Then the induced edge labeling is as follows:

$$\begin{split} f^*(u_iu_{i+1}) &= \\ \left\{ \begin{aligned} m+n-2i & 1 \leq i \leq \left\lfloor \frac{\mathbb{B}}{2} \right\rfloor \\ n & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \ and \ m \ is \ odd \\ n+1 & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \ and \ m \ is \ even \\ n-m-1+2i & \left\lfloor \frac{m}{2} \right\rfloor + 2 \leq i \leq m-1 \\ f^*(u_1u_m) &= m+n-1 \end{split} \right.$$

and $f^*(v_i v_{i+1}) = i$, for $1 \le i \le n-1$.

Hence, f is a logarithmic mean labeling of the graph $C_m \cup P_n$. Thus the graph $C_m \cup P_n$ is a logarithmic mean graph, for any $m \ge 3$ and $n \ge 2$.

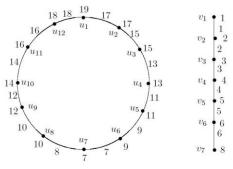


Fig. 2.2 A logarithmic mean labeling of $C_{12} \cup P_7$

The graph $C_m \cup nT$, $n \ge 2$ cannot be a logarithmic mean graph. But the graph $C_m \cup T$ may be a logarithmic mean graph. The T-graph T_n is obtained by attaching a pendant vertex to a neighbour of the pendant vertex of a path on (n-1) vertices.

Theorem 2.3 For a T-graph T_n , $T_n \cup C_m$ is a logarithmic mean graph, for $n \ge 2$ and $m \ge 3$.

Proof. Let $u_1, u_2, ..., u_{n-1}$ be the vertices of the path P_{n-1} and u_n be the pendant vertex identified with u_2 . Let $v_1, v_2, ..., v_m$ be the vertices of the cycle C_m . $\therefore V(T_n \cup C_m) = V(C_m) \cup V(P_n) \cup \{u_n\} \text{ and }$ $E(T_n \cup C_m) = E(C_m) \cup E(P_n) \cup \{u_2u_n\}.$

We define $f:V(T_n \cup C_m) \to \{1,2,3,...,m+n\}$ as follows:

$$f(v_i) = \begin{cases} m+n+2-2i & 1 \le i \le \left\lfloor \frac{m}{2} \right\rfloor \\ n & i = \left\lfloor \frac{m}{2} \right\rfloor + 1 \\ n-m-1+2i & \left\lfloor \frac{m}{2} \right\rfloor + 2 \le i \le m, \end{cases}$$

$$f(u_i) = i+1, \text{ for } 1 \le i \le n-2.$$

$$f(u_{n-1}) = n - 1$$
 ad $f(u_n) = 1$.

Then the induced edge labeling is as follows:

$$\begin{array}{lll} f^*(v_iv_{i+1}) = & \\ \left(m+n-2i & 1 \leq i \leq \left\lfloor\frac{m}{2}\right\rfloor 2mm \\ n & i = \left\lfloor\frac{m}{2}\right\rfloor + 1 \text{ and } m \text{ is odd } 2mm \\ n+1 & i = \left\lfloor\frac{m}{2}\right\rfloor + 1 \text{ and } m \text{ is even } 2mm \\ n-m-1+2i & \left\lfloor\frac{m}{2}\right\rfloor + 2 \leq i \leq m-1, \end{array} \right.$$

$$f^*(u_iu_{i+1}) = i + 1$$
, for $1 \le i \le n - 2$,

$$f^*(u_2u_n) = 1$$
 and $f^*(v_1v_m) = m + n - 1$.

Hence f is a logarithmic mean labeling of $T_n \cup C_m$. Thus the graph $T_n \cup C_m$ is a logarithmic mean graph, for $n \ge 2$ and $m \geq 3$.

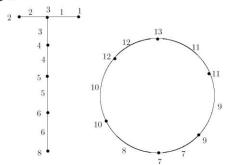


Fig. 2.3 A logarithmic mean labeling of $T_7 \cup C_6$

Theorem 2.4 Union of any two cycles C_m and C_n is a logarithmic mean graph.

Proof. Let $u_1, u_2, ..., u_m$ and $v_1, v_2, ..., v_n$ be the vertices of the cycles C_m and C_n respectively. We define

of the cycles
$$C_m$$
 and C_n respectively. We define $f:V(C_m \cup C_n) \to \{1,2,3,...,m+n+1\}$ as follows:
$$f(u_i) = \begin{cases} i & 1 \le i \le \left\lfloor \frac{m+1}{\ln(m+2)} \right\rfloor - 1 \\ i+1 & \left\lfloor \frac{m+1}{\ln(m+2)} \right\rfloor \le i \le m-1, \end{cases}$$

$$f(u_m) = m + 2 \text{ and}$$

$$f(v_i) = \begin{cases} m + n + 3 - 2i & 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor \\ m + 1 & i = \left\lfloor \frac{n}{2} \right\rfloor + 1 \\ m - n + 2i & \left\lfloor \frac{n}{2} \right\rfloor + 2 \le i \le n. \end{cases}$$

Then the induced edge labeling is as follows:

$$f^*(u_iu_{i+1}) = \begin{cases} i & 1 \leq i \leq \left\lfloor \frac{m+1}{\ln(m+2)} \right\rfloor - 1 \\ i+1 & \left\lfloor \frac{m+1}{\ln(m+2)} \right\rfloor \leq i \leq m-1, \end{cases}$$

$$f^*(v_iv_{i+1}) = \begin{cases} m+n+1-2i & 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\ m+1 & i = \left\lfloor \frac{n}{2} \right\rfloor +1 \text{ and } n \text{ is odd} \end{cases}$$

$$\begin{cases} m+2 & i = \left\lfloor \frac{n}{2} \right\rfloor +1 \text{ and } n \text{ is even} \end{cases}$$

$$\begin{cases} m-n+2i & \left\lfloor \frac{n}{2} \right\rfloor +2 \leq i \leq n-1, \end{cases}$$

$$f^*(u_1u_m) = \left\lfloor \frac{m+1}{\ln(m+2)} \right\rfloor$$
and $f^*(v,v_1) = m+n$

Hence, f is a logarithmic mean labeling of the graph $C_m \cup C_n$. Thus the graph $C_m \cup C_n$ is a logarithmic mean graph, for any $m, n \geq 3$.

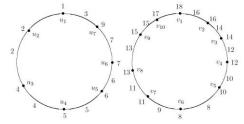


Fig. 2.4 A logarithmic mean labeling of $C_7 \cup C_{10}$

Theorem 2.5 $C_3 \times P_n$ is a logarithmic mean graph, for any

Proof. Let
$$V(C_3 \times P_n) = \{v_1^{(i)}, v_2^{(i)}, v_3^{(i)}; 1 \le i \le n\}$$
 be the vertex set of $C_3 \times P_n$ and $E(C_3 \times P_n) = \{v_1^{(i)} v_2^{(i)}, v_2^{(i)} v_3^{(i)}, v_1^{(i)} v_3^{(i)}; 1 \le i \le n\} \cup \{v_1^{(i)} v_1^{(i+1)}, v_2^{(i)} v_2^{(i+1)}, v_3^{(i)} v_3^{(i+1)}; 1 \le i \le n-1\}$ be the edge set of $C_3 \times P_n$.

We define
$$f: V(C_3 \times P_n) \to \{1, 2, 3, ..., 6n - 2\}$$
 as follows:

$$f(v_1^{(j)}) = \begin{cases} 9j - 8 & 1 \le j \le 2 \\ 8j - 11 & 3 \le j \le 4, \end{cases}$$

$$f(v_2^{(j)}) = \begin{cases} 6j - 3 & 1 \le j \le 2 \\ 3j + 7 & 3 \le j \le 4, \end{cases}$$

$$f(v_3^{(j)}) = \begin{cases} 5+j & 1 \le j \le 2 \\ 7j - 6 & 3 \le j \le 4, \end{cases}$$

 $f(v_1^{(j)}) = f(v_i^{(j-3)}) + 18$, for $1 \le i \le 3$ and $5 \le j \le n$.

Then the induced edge labeling is as follows:

Then the induced edge labeling is as follows:
$$f^*(v_1^{(j)}v_2^{(j)}) = \begin{cases} 1 & j=1 \\ 5j-1 & 2 \leq j \leq 3 \\ f^*(v_1^{(j-3)}v_2^{(j-3)}) + 18 & 4 \leq j \leq n, \end{cases}$$

$$f^*(v_2^{(j)}v_3^{(j)}) = \begin{cases} 3j+1 & 1 \leq j \leq 2 \\ 5j & 3 \leq j \leq 4 \\ f^*(v_2^{(j-3)}v_3^{(j-3)}) + 18 & 5 \leq j \leq n, \end{cases}$$

$$f^*(v_1^{(j)}v_3^{(j)}) = \begin{cases} 6j-4 & 1 \leq j \leq 2 \\ 8j-11 & 3 \leq j \leq 4 \\ f^*(v_1^{(j-3)}v_3^{(j-3)}) + 18 & 5 \leq j \leq n, \end{cases}$$

$$\begin{split} f^*(v_1^{(j)}v_1^{(j+1)}) &= \\ \begin{cases} 8j-5 & 1 \leq j \leq 2 \\ 8(j-1) & 3 \leq j \leq 4 \\ f^*(v_1^{(j-3)}v_1^{(j-2)}) + 18 & 5 \leq j \leq n-1, \end{cases} \\ f^*(v_2^{(j)}v_2^{(j+1)}) &= \\ \begin{cases} 5 & j = 1 \\ 5j+2 & 2 \leq j \leq 4 \\ f^*(v_2^{(j-3)}v_2^{(j-2)}) + 18 & 5 \leq j \leq n-1 \text{ and } \end{cases} \\ f^*(v_3^{(j)}v_3^{(j+1)}) &= \\ \begin{cases} 4j+2 & 1 \leq j \leq 2 \\ 5j+3 & 3 \leq j \leq 4 \\ f^*(v_3^{(j-3)}v_3^{(j-2)}) + 18 & 5 \leq j \leq n-1. \end{cases} \end{split}$$

Hence f is a logarithmic mean labeling of $C_3 \times P_n$. Thus the graph $C_3 \times P_n$ is a logarithmic mean graph, for any n.

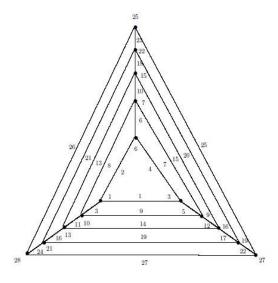


Fig. 2.5 A logarithmic mean labeling of $C_3 \times P_5$

Theorem 2.6 $C_n \odot K_1$ is a logarithmic mean graph, for

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of the cycle C_n and let u_i be the pendant vertices attached at each v_i , for $1 \le i \le n$. Consider the graph $C_n \odot K_1$, for $n \ge 4$.

Case (i)
$$\left\lfloor \frac{2n}{\ln(2n+1)} \right\rfloor$$
 is odd.

We define $f:V(C_n \odot K_1) \rightarrow \{1,2,3,...,2n+1\}$

$$f(v_i) = \begin{cases} 1 & i = 1 \\ 2i & 2 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \\ 2i + 1 & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 2 \le i \le n \end{cases}$$

$$f(u_i) = \begin{cases} 2 & i = 1 \\ 2i - 1 & 2 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \\ 2i + 1 & i = \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \\ 2i & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 2 \le i \le n. \end{cases}$$

Then the induced edge labeling is as follows:

Logarithmic Mean Labeling of Some Cycle Related Graphs

$$\begin{split} f^*(v_iv_{i+1}) &= \begin{cases} 2i & 1 \leq i \leq \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \\ 2i+1 & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \leq i \leq n-1, \end{cases} \\ f^*(v_1v_n) &= \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \text{ and } \\ f^*(u_iv_i) &= \begin{cases} 2i-1 & 1 \leq i \leq \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \\ 2i & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \leq i \leq n. \end{cases} \end{split}$$

Case (ii) $\left\lfloor \frac{2n}{\ln(2n+1)} \right\rfloor$ is even.

We define $f:V(C_n \odot K_1) \to \{1,2,3,...,2n+1\}$ as follows:

$$f(v_i) = \begin{cases} 1 & i = 1 \\ 2i & 2 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor & \text{and} \\ 2i + 1 & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \le i \le i \le n \end{cases}$$
 and
$$f(u_i) = \begin{cases} 2 & i = 1 \\ 2i - 1 & 2 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \\ 2i & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \le i \le n. \end{cases}$$
 Then the induced edge labeling is as follows:

Then the induced edge labeling is as follows:
$$f^*(v_iv_{i+1}) = \begin{cases} 2i & 1 \le i \le n. \\ 1 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor - 1 \\ 2i + 1 & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \le i \le n - 1, \end{cases}$$

$$f^*(v_1v_n) = \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \text{ and }$$

$$f^*(u_iv_i) = \begin{cases} 2i-1 & 1 \le i \le \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor \\ 2i & \left\lfloor \frac{4n}{\ln(2n+1)} \right\rfloor + 1 \le i \le n. \end{cases}$$
 Hence,

the graph $C_n \odot K_1$, for $n \ge 4$ admits a logarithmic mean labeling. For n = 3, a logarithmic mean labeling of $C_3 \odot K_1$ shown

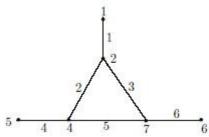


Fig. 2.6 A logarithmic mean labeling of $C_3 \odot K_1$

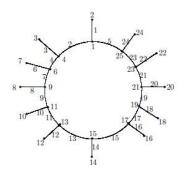


Fig. 2.7 A logarithmic mean labeling of $C_{12} \odot K_1$

II. CONCLUSION

This paper, exhibits the logarithmic meanness of some cycle related graphs like the cycle C_n for $n \ge 3$.

REFERENCES

- 1. Durai Baskar, S. Arockiaraj and B. Rajendran, F-Geometric mean labeling of some chain graphs and thorn graphs, Kragujevac Journal of Mathematics, 37 (2013) 163-186.
- Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric meanness of graphs obtained from paths, Utilitas Mathematica, 101 (2016), 45-68.
- J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 8(2015).
- F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972.
- S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210-213.
- S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29-35.
- Rosa, On certain valuation of the vertices of graph, International Symposium, Rome, July 1966, Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355.

