### Hüseyin Gökçekuş, Youssef Kassem, Shilan Abdi

Abstract: The rises in the populations and energy demand have encouraged the scientific researchers to investigate the renewable energies potential practically solar energy in the world. The solar rooftop Photovoltaic system is considered an alternative energy source for generating electricity for small households. Therefore, the main aim of this article is to research the possibility of using grid-connected PV system in Northern Cyprus with different urban locations. This study is focused on the use of PVGIS as simulation tool to analyze the performance of 110kW PV system also the comparison between various Photovoltaic technologies based on performance ratio. The result showed that the annual average performance ratio was varied from 75% to 80%, within the three types of PV technologies considered here, Cadmium telluride (CdTe) Photovoltaic system has the higher performance ratio except in Girne (35.337, 33.319) and Dipkarpaz (35.595, 34.379).

Index Terms: Grid-connected; photovoltaic; Northern Cyprus; PV technologies; simulation tool.

## I. INTRODUCTION

Solar energy is clean fuel energy and it is considered as significant renewable source to reduce the fuel consumptions. A key advantage of solar energy is that they avoid carbon dioxide emissions [1]. Solar system is based on converting sunlight into electrical energy directly using photovoltaic (PV). Solar PV system is used extensively for meeting the electricity demand in many countries particularly with the constant fluctuating in supply of grid electricity [2]. The process of harvesting solar energy by PV is accomplished using solar modules consist of a number of solar cells made of photovoltaic materials. The grid-connected PV systems and stand-alone PV systems are the most widely formations of PV system used [3].

Various studies have been investigated the PV system performance. Dondariya et al., [4] examined the feasibility of grid-connected rooftop PV system for small household building in India using four-simulation software. Charfi et al., [5] studied experimentally the performance of PV system

#### Revised Manuscript Received on June 05, 2019

**Hüseyin Gökçekuş**, Department of Civil Engineering, Civil and Environmental Engineering Faculty, Near East University, Nicosia (via Mersin 10, Turkey), Cyprus

**Youssef Kassem**, Department of Civil Engineering, Civil and Environmental Engineering Faculty and Department of Mechanical Engineering, Engineering Faculty, Near East University, Nicosia (via Mersin 10, Turkey), Cyprus.

**Shilan Abdi**, Department of Civil Engineering, Civil and Environmental Engineering Faculty, Near East University, Nicosia (via Mersin 10, Turkey), Cyprus.

with different inclination angles. Shukla et al. [6] investigated the feasibility of grid-connected rooftop PV system for residential Hostel building at MANIT using Solargis PV Planner software. Kumar et al. [7] analyzed the feasibility of developing a solar PV plant at two different campuses of University Malaysia Pahang (UMP) using PVGIS and PV Watts simulation tools. The global energy demand is rapidly increased because the growth of the population, consumption of fossil fuel [8]. Therefore, the increases of populations and energy demand have increased in recent years the significance of renewable energy as alternative source especially solar energy for electricity generating in Northern Cyprus to reduce greenhouse gas emissions (GHG). Numerous studies have been conducted the solar potential in Northern Cyprus. Kassem et al. [9] evaluated the economic feasibility of 12MW grid-connected wind farms and PV plants for producing electricity at Girne and Lefkoşa in Northern Cyprus. The authors concluded that PV plants are the most economical option compared to wind farms for generating electricity in the selected studied. Kassem and Gökçekuş [10] conducted a techno-economic assessment of a proposed 1MW grid-connected PV power plant in the town of Lefke. The analysis results showed that a PV plant could be used as a viable alternative for reducing the GHG emissions in Northern Cyprus and generating electricity from environmentally friendly sources. In this regard, the current paper aims to describe the solar potential at 25 locations across the Northern Cyprus. PVGIS simulation software is tool to evaluate the performance of 110kW grid-connected rooftop PV system for given location. In addition, three different PV technologies (crystalline silicon PV modules, Copper Indium Selenide (CIS) PV modules and Cadmium telluride (CdTe) PV modules) are compared in order to select the best PV technologies for area based on the simulation results. Moreover, the effect of inclination angles on the performance of PV systems has been discussed.

#### II. MATERIAL AND METHOD

## A. Location details

Cyprus is the third largest island in the Mediterranean Sea, and the climate of Cyprus is considered as subtropical

climate, Mediterranean and semi-arid (in the TRNC) which is classified as Csa



and BSh according to Köppen-Geiger climate classification [11]. Cyprus location make it hard to have an electrical network connection with surrounding countries. hence, the demands of energy in the Northern part of Cyprus need to be fulfilled by a local power generator mostly by fossil fuel. Locations considered in this study are the major cities and towns of Northern Cyprus. Figure 1 shows the location of the towns considered in this study on map. The description of the explored areas in terms of longitude, latitude, and elevation is tabulated in Table 1.

power a building. The components of the grid-connected solar PV plants are shown in Figure 2.

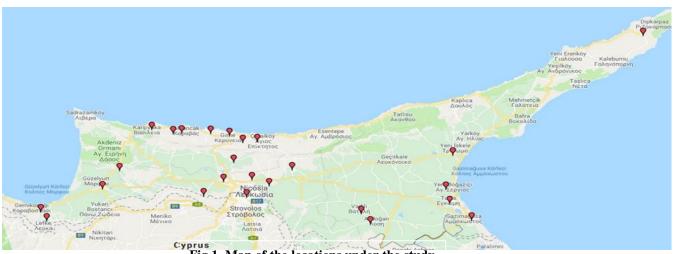



Fig.1. Map of the locations under the study in Northern Cyprus

Table 1. Information of the studied towns

| Table 1. Information of the studied towns |               |               |           |  |  |  |  |  |  |
|-------------------------------------------|---------------|---------------|-----------|--|--|--|--|--|--|
| Location                                  | Latitude      | Longitude     | Elevation |  |  |  |  |  |  |
| Location                                  | (° <b>N</b> ) | (° <b>E</b> ) |           |  |  |  |  |  |  |
| Akdogan                                   | 35.107        | 33.68         | 60        |  |  |  |  |  |  |
| Lefke                                     | 35.116        | 32.85         | 107       |  |  |  |  |  |  |
| Gazimagusa                                | 35.118        | 33.94         | 16        |  |  |  |  |  |  |
| Vadili                                    | 35.134        | 33.656        | 55        |  |  |  |  |  |  |
| Gemikonagi                                | 35.139        | 32.835        | 13        |  |  |  |  |  |  |
| Tuzla                                     | 35.161        | 33.883        | 4         |  |  |  |  |  |  |
| Lefkosa                                   | 35.177        | 33.363        | 146       |  |  |  |  |  |  |
| Alaykoy                                   | 35.181        | 33.253        | 172       |  |  |  |  |  |  |
| Yenibogazici                              | 35.197        | 33.874        | 11        |  |  |  |  |  |  |
| Guzelyurt                                 | 35.198        | 32.993        | 49        |  |  |  |  |  |  |
| Haspolat                                  | 35.206        | 33.42         | 109       |  |  |  |  |  |  |
| Gonyeli                                   | 35.218        | 33.303        | 148       |  |  |  |  |  |  |
| Hamitkoy                                  | 35.222        | 33.377        | 148       |  |  |  |  |  |  |
| Kalkanli                                  | 35.245        | 33.037        | 134       |  |  |  |  |  |  |
| Degirmenlik                               | 35.248        | 33.479        | 154       |  |  |  |  |  |  |
| Asagi dikmen                              | 35.267        | 33.33         | 254       |  |  |  |  |  |  |
| Iskele                                    | 35.286        | 33.892        | 26        |  |  |  |  |  |  |
| Ozankoy                                   | 35.319        | 33.354        | 76        |  |  |  |  |  |  |
| Catalkoy                                  | 35.321        | 33.39         | 82        |  |  |  |  |  |  |
| Girne                                     | 35.337        | 33.319        | 23        |  |  |  |  |  |  |
| Lapta                                     | 35.341        | 33.175        | 60        |  |  |  |  |  |  |
| Karaoğlanoğlu                             | 35.342        | 33.271        | 20        |  |  |  |  |  |  |
| Alsancak                                  | 35.343        | 33.196        | 57        |  |  |  |  |  |  |
| Karsiyaka                                 | 35.352        | 33.12         | 52        |  |  |  |  |  |  |
| Dipkarpaz                                 | 35.595        | 34.379        | 126       |  |  |  |  |  |  |

#### B. System description

Table 2 shows the description of 110kW rooftop system used. The system is of fixed stand type and can appropriately

Table 2. Description of a 110kW rooftop system

|                       | 1 0                            |
|-----------------------|--------------------------------|
| Installed power       | 110kW                          |
| Type of modules       | CIS, Crystalline silicon, CdTe |
| Mounting system       | Fixed mounting, free standing  |
| Optimum Azimuth/slope | Variable                       |
| Availability          | 95%                            |
| System loss:          | 14 %                           |
| Availability          | 95.0%                          |
| DC/AC losses          | 5.0%/2.0%                      |
|                       |                                |

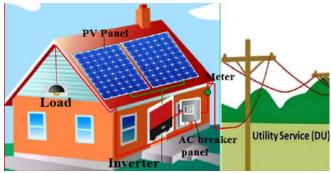



Fig. 2. Grid-connected PV system components

#### C. Energy harvest and performance ratio

Energy yield and performance ratio of the system are the most important parameters to estimate the performance of the PV system, which depends on two factors: solar radiation and energy production under the operating conditions. They are expressed as below.



$$Energy Yield = \frac{E_{PV,AC}}{P_{max,G,STC}}$$

$$E_{AC}$$
(1)

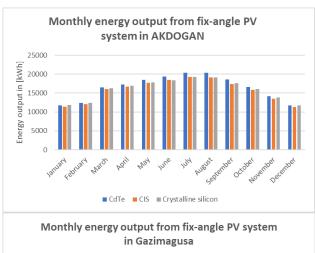
$$Performance\ ratio = \frac{E_{AC}}{E_{DC} \times Irradiation}$$
 (2)

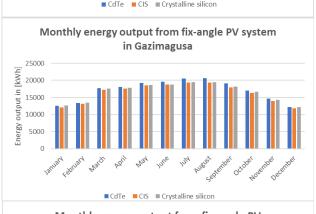
where  $E_{AC}$  is energy output,  $E_{DC}$  is the nameplate D.C power obtained in (stc) standard test condition.

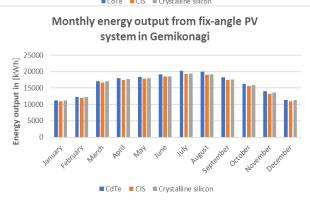
#### III. RESULT AND DISCUSSION

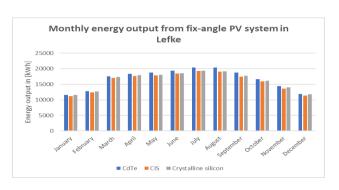
#### A. Solar irradiation

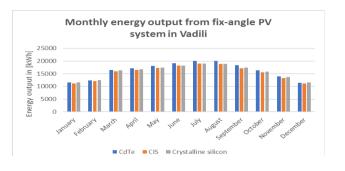
The data of irradiation obtained from PVGIS are tabulated in Table 3. The in-plane normal irradiation data are varied from 112 to 240 kWh/m2. Generally, the maximum in-plane solar irradiation is obtained in July and August, while the minimum in-plane irradiation is recorded in December and January. The yearly irradiation according to the location varies from kWh/m2 2341 to 2240 kWh/m2.

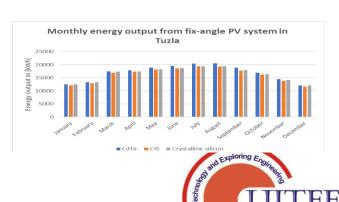

## B. Estimated energy production for different PV technologies


Generally, the global solar irradiation does not depend on the PV technologies. Unlike the energy output from the PV panel, the monthly energy output with optimum slope angle and azimuth angle at different test location presented in Figure 3 to Figure 10 and tabulated in Table 4. It is observed that the maximum electricity generated in July. In addition, it is noticed that the monthly electricity production by CdTe PV modules is higher compared to crystalline silicon and CIS PV modules at the optimum slope angle and azimuth angle in all location except Girne (35.337, 33.319) and Dipkarpaz (35.595, 34.379).


Table 3. Monthly solar in-plane normal irradiation [kWh/m²] with fixed-angle in test locations


| Location     | January | February | March | April | May | June | July | August | September | October | November | December       | Yearly   |
|--------------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------------|----------|
| Akdogan      | 130     | 139      | 186   | 198   | 214 | 226  | 238  | 237    | 214       | 190     | 157      | 130            | 225<br>9 |
| Lefke        | 128     | 143      | 199   | 210   | 216 | 226  | 238  | 237    | 216       | 192     | 161      | 132            | 229<br>8 |
| Gazimagusa   | 138     | 150      | 199   | 206   | 220 | 227  | 236  | 237    | 218       | 194     | 162      | 135            | 232<br>2 |
| Vadili       | 128     | 140      | 187   | 197   | 210 | 225  | 237  | 236    | 213       | 188     | 156      | 129            | 224<br>6 |
| Gemikonagi   | 125     | 139      | 194   | 206   | 213 | 224  | 236  | 234    | 213       | 188     | 156      | 127            | 225<br>5 |
| Tuzla        | 137     | 148      | 196   | 204   | 217 | 226  | 236  | 236    | 216       | 193     | 161      | 134            | 230<br>4 |
| Lefkosa      | 128     | 139      | 188   | 201   | 210 | 222  | 234  | 233    | 211       | 190     | 160      | 130            | 224<br>6 |
| Alaykoy      | 135     | 148      | 198   | 207   | 213 | 225  | 235  | 235    | 215       | 192     | 163      | 135            | 230<br>1 |
| Yenibogazici | 139     | 150      | 197   | 204   | 217 | 226  | 237  | 237    | 217       | 196     | 166      | 138            | 232<br>4 |
| Guzelyurt    | 133     | 147      | 200   | 212   | 219 | 230  | 239  | 239    | 221       | 196     | 164      | 136            | 233<br>6 |
| Haspolat     | 128     | 141      | 190   | 201   | 208 | 221  | 234  | 233    | 211       | 190     | 160      | 129            | 224<br>6 |
| Gonyeli      | 132     | 144      | 194   | 204   | 212 | 224  | 235  | 235    | 214       | 192     | 162      | 132            | 228<br>0 |
| Hamitkoy     | 129     | 141      | 189   | 202   | 210 | 222  | 235  | 233    | 212       | 192     | 161      | 131            | 225<br>7 |
| Kalkanli     | 131     | 146      | 200   | 215   | 220 | 230  | 239  | 240    | 222       | 196     | 163      | 134            | 233<br>6 |
| Degirmenlik  | 129     | 143      | 191   | 200   | 207 | 221  | 234  | 233    | 211       | 187     | 157      | 128            | 224<br>1 |
| Asagi dikmen | 131     | 144      | 195   | 205   | 212 | 223  | 235  | 235    | 214       | 192     | 162      | 131<br>Explori | 227      |


| Iskele        | 137 | 149 | 198 | 205 | 215 | 225 | 237 | 237 | 216 | 194 | 165 | 135 | 231      |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| Ozankoy       | 123 | 138 | 194 | 206 | 212 | 224 | 236 | 235 | 215 | 189 | 150 | 118 | 224<br>0 |
| Catalkoy      | 126 | 140 | 195 | 207 | 213 | 225 | 236 | 236 | 216 | 192 | 154 | 122 | 226<br>2 |
| Girne         | 124 | 138 | 197 | 210 | 217 | 228 | 238 | 238 | 219 | 193 | 155 | 121 | 227<br>8 |
| Lapta         | 118 | 135 | 195 | 211 | 218 | 230 | 239 | 238 | 218 | 190 | 146 | 112 | 225<br>0 |
| Karaoğlanoğlu | 125 | 138 | 197 | 211 | 218 | 228 | 238 | 238 | 218 | 194 | 158 | 122 | 228<br>5 |
| Alsancak      | 122 | 138 | 198 | 213 | 219 | 230 | 240 | 239 | 219 | 193 | 152 | 122 | 228<br>5 |
| Karsiyaka     | 132 | 143 | 203 | 217 | 223 | 230 | 239 | 239 | 222 | 201 | 162 | 130 | 234<br>1 |
| Dipkarpaz     | 128 | 146 | 196 | 205 | 217 | 225 | 234 | 235 | 213 | 190 | 157 | 124 | 227<br>0 |
| Maximum       | 139 | 150 | 203 | 217 | 223 | 230 | 240 | 240 | 222 | 201 | 166 | 138 | 234<br>1 |
| Minimum       | 118 | 135 | 186 | 197 | 207 | 221 | 234 | 233 | 211 | 187 | 146 | 112 | 224<br>0 |














Published By: Blue Eyes Intelligence Engineering & Sciences Publication

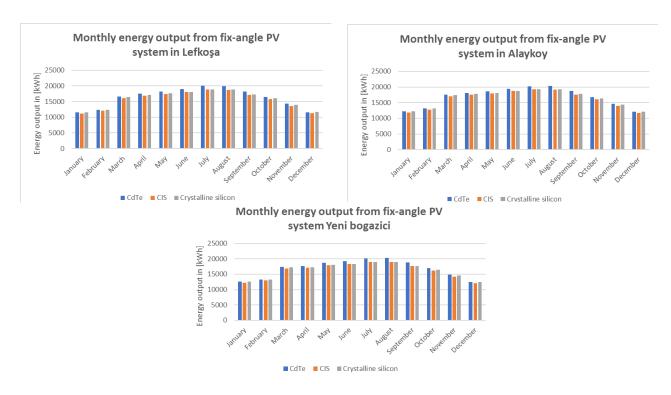
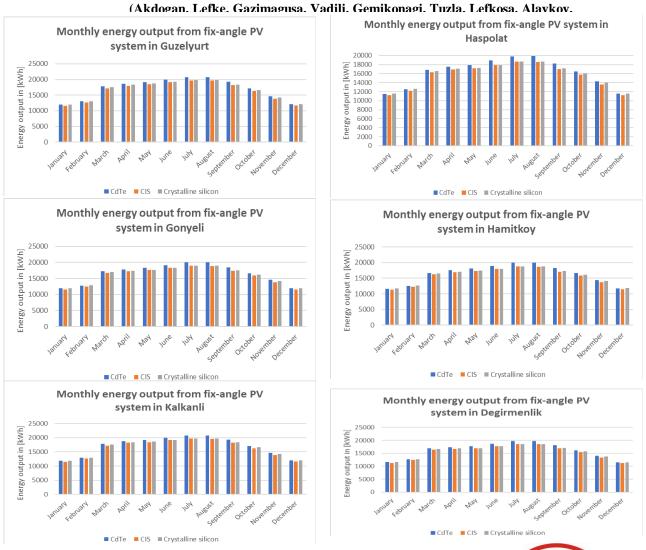




Fig. 3. Monthly electricity production for different PV technologies at nine locations (Akdogan, Lefke, Gazimagusa, Vadili, Gemikonagi, Tuzla, Lefkosa, Alaykov,



A Journal of In

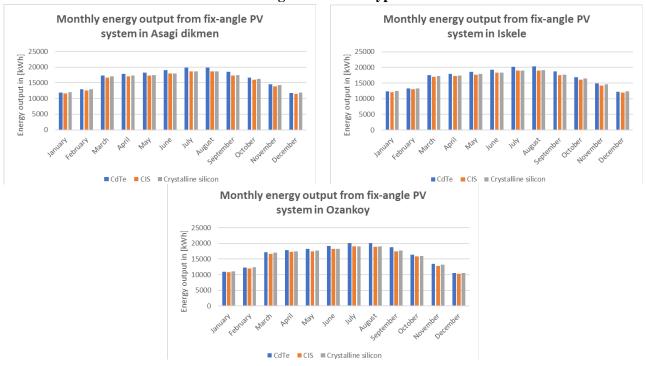
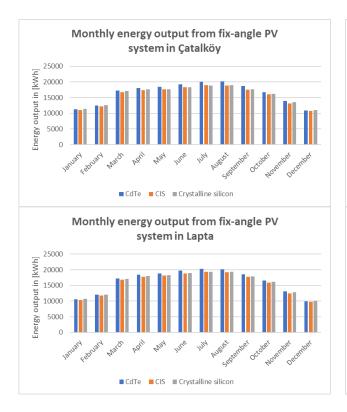
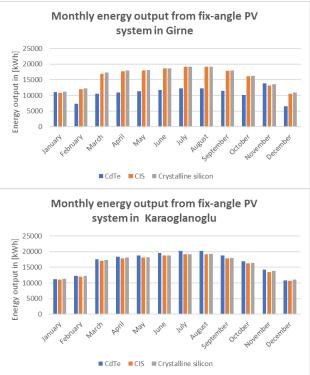





Fig. 4. Monthly electricity production for different PV technologies at nine locations (Guzelyurt, Haspolat, Gonyeli, Hamitkoy, Kalkanli, Degirmenlik, Asagi dikmen, Iskele, Ozankoy)





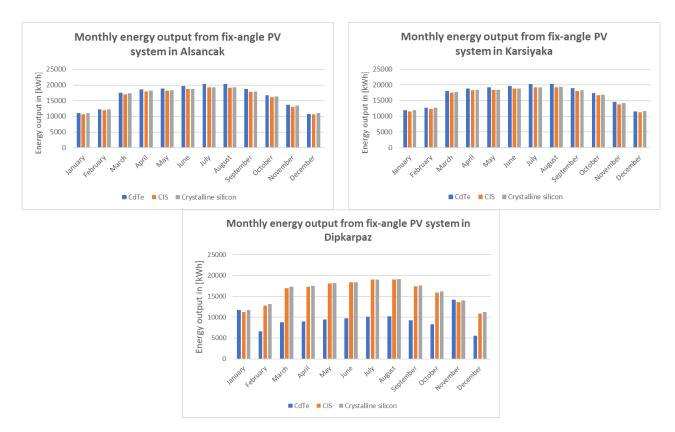



Fig. 5. Monthly electricity production for different PV technologies at seven locations (Catalkoy, Girne, Lapta, Karaoğlanoğlu, Alsancak, Karsiyaka, Dipkarpaz)

Table 4. Annual and average energy output from fix-angle PV system at optimum tilt angle (31°) in test locations with different PV technologies

|                                                                     | technologies |         |                     |          |          |                     |  |  |  |
|---------------------------------------------------------------------|--------------|---------|---------------------|----------|----------|---------------------|--|--|--|
| Average energy output for a month [kWh]  Annual energy output [kWh] |              |         |                     |          |          |                     |  |  |  |
| Location                                                            | CdTe         | CIS     | Crystalline silicon | CdTe     | CIS      | Crystalline silicon |  |  |  |
| Akdogan                                                             | 16475        | 15733.3 | 15933.3             | 197700   | 188800   | 191200              |  |  |  |
| Lefke                                                               | 16758.3      | 15958.3 | 16225               | 201100   | 191500   | 194700              |  |  |  |
| Gazimagusa                                                          | 17041.7      | 16333.3 | 16600               | 204500   | 196000   | 199200              |  |  |  |
| Vadili                                                              | 16266.7      | 15541.7 | 15766.7             | 195200   | 186500   | 189200              |  |  |  |
| Gemikonagi                                                          | 16350        | 15733.3 | 15975               | 196200   | 188800   | 191700              |  |  |  |
| Tuzla                                                               | 16900        | 16183.3 | 16425               | 202800   | 194200   | 197100              |  |  |  |
| Lefkosa                                                             | 16308.3      | 15600   | 15825               | 195700   | 187200   | 189900              |  |  |  |
| Alaykoy                                                             | 16816.7      | 16141.7 | 16383.3             | 201800   | 193700   | 196600              |  |  |  |
| Yenibogazici                                                        | 16875        | 16116.7 | 16325               | 202500   | 193400   | 195900              |  |  |  |
| Guzelyurt                                                           | 17116.7      | 16400   | 16658.3             | 205400   | 196800   | 199900              |  |  |  |
| Haspolat                                                            | 16283.3      | 15550   | 15775               | 195400   | 186600   | 189300              |  |  |  |
| Gonyeli                                                             | 16566.7      | 15866.7 | 16083.3             | 198800   | 190400   | 193000              |  |  |  |
| Hamitkoy                                                            | 16350        | 15616.7 | 15833.3             | 196200   | 187400   | 190000              |  |  |  |
| Kalkanli                                                            | 17058.3      | 16358.3 | 16591.7             | 204700   | 196300   | 199100              |  |  |  |
| Degirmenlik                                                         | 16200        | 15475   | 15650               | 194400   | 185700   | 187800              |  |  |  |
| Asagi dikmen                                                        | 16200        | 15475   | 15650               | 194400   | 185700   | 187800              |  |  |  |
| Iskele                                                              | 16833.3      | 16083.3 | 16316.7             | 202000   | 193000   | 195800              |  |  |  |
| Ozankoy                                                             | 16266.7      | 15575   | 15791.7             | 195200   | 186900   | 189500              |  |  |  |
| Catalkoy                                                            | 16200        | 15475   | 15650               | 194400   | 185700   | 187800              |  |  |  |
| Girne                                                               | 10774.2      | 15833.3 | 16058.3             | 129290   | 190000   | 192700              |  |  |  |
| Lapta                                                               | 16284.2      | 15664.2 | 15883.3             | 195410   | 187970   | 190600              |  |  |  |
| Karaoğlanoğlu                                                       | 16550        | 15933.3 | 16133.3             | 198600   | 191200   | 193600              |  |  |  |
| Alsancak                                                            | 16541.7      | 15891.7 | 16116.7             | 198500   | 190700   | 193400              |  |  |  |
| Karsiyaka                                                           | 16966.7      | 16308.3 | 16500               | 203600   | 195700   | 198000              |  |  |  |
| Dipkarpaz                                                           | 9411.7       | 15891.7 | 16125               | 112940   | 190700   | 193500              |  |  |  |
| Average                                                             | 16055.8      | 15869.6 | 16091.0             | 192669.6 | 190434.8 | 193092              |  |  |  |

#### C. Performance ratio

The yearly average performance ratio for the three PV technologies are listed in Table 5. Also, the performance ratio is within the range of 75.9-80.3%. Moreover, CdTe PV technologies in most locations shows higher performance in terms of annual energy production compared to other PV technologies. This may be caused by lower temperature coefficient and capture losses of these technologies. But, in Girne (35.337, 33.319) and Dipkarpaz (35.595, 34.379) CdTe PV performed very poorly

Table 5. Annual average performance ratio at optimum tilt angle (31°) in test locations with different PV technologies

|              |         |        | PR_Cry_S |
|--------------|---------|--------|----------|
| Location     | PR_CdTe | PR_CIS | i        |
| Akdogan      | 79.90%  | 76.40% | 77.60%   |
| Lefke        | 79.80%  | 76.10% | 77.50%   |
| Gazimagusa   | 80.30%  | 77.10% | 78.50%   |
| Vadili       | 79.30%  | 76.00% | 77.30%   |
| Gemikonagi   | 79.40%  | 76.40% | 77.70%   |
| Tuzla        | 80.30%  | 77.00% | 78.30%   |
| Lefkosa      | 79.50%  | 76.20% | 77.50%   |
| Alaykoy      | 80.00%  | 76.80% | 78.10%   |
| Yenibogazici | 79.50%  | 76.10% | 77.20%   |
| Guzelyurt    | 80.10%  | 76.80% | 78.20%   |
| Haspolat     | 79.40%  | 76.00% | 77.30%   |
| Gonyeli      | 79.60%  | 76.30% | 77.50%   |
| Hamitkoy     | 79.30%  | 76.00% | 77.20%   |
| Kalkanli     | 79.90%  | 76.70% | 78.10%   |
| Degirmenlik  | 79.20%  | 75.90% | 76.90%   |
| Asagi dikmen | 79.50%  | 76.10% | 77.20%   |
| Iskele       | 79.70%  | 76.40% | 77.60%   |
| Ozankoy      | 79.50%  | 76.30% | 77.60%   |
| Catalkoy     | 79.60%  | 76.30% | 77.50%   |
| Girne        | 53.20%  | 76.30% | 77.60%   |
| Lapta        | 79.30%  | 76.40% | 77.70%   |
| Karaoğlanoğl | 79.30%  | 76.50% | 77.70%   |
| u            |         |        |          |
| Alsancak     | 79.30%  | 76.30% | 77.70%   |
| Karsiyaka    | 79.40%  | 76.40% | 77.50%   |
| Dipkarpaz    | 47.10%  | 76.90% | 78.20%   |
| Average      | 77.3    | 76.4   | 77.6     |

#### IV. CONCLUSIONS

The current study described herein had two goals. The first goal was to evaluate and describe the solar energy harvesting potential in the Northern Cyprus. To achieve this, PVGIS simulation tool was used in terms of collecting and analyzing data. The result demonstrated that the maximum and minimum solar radiation potential at the selected locations is achieved in July and January, respectively. The second goal of this study was to determine the most suitable PV technologies for area based on the simulation results. At this

stage of the analysis, energy yield and performance ratio were calculated for each system. The result showed that the annual performance ratio was varied from 75.9 to 80.3%. and their energy yields were ranged from 112940 to 205400 kWh annually. Among the three types of PV systems considered here, CdTe PV system has the higher performance ratio except in two locations where Crystalline silicon type outperformed this need further study to explain the causes of this situation. From the annual energy output of the PV systems, it is concluded that all the three technology achieve satisfactory performance under the subtropical and Mediterranean weather conditions. The electrical power delivered by PV systems can be used to power many applications in houses, residences or public loads like street lightings.

#### **REFERENCES**:

- Kalogirou, S. A. (2009). Solar Energy Engineering: Processes and Systems. Cambridge, MA: Academic Press.
- Hadi, H., Tokuda, S., & Rahardjo, S. (2003). Evaluation of performance of photovoltaic system with maximum power point (MPP). Solar Energy Materials and Solar Cells, 75(3-4), 673-678. doi:10.1016/s0927-0248(02)00146-0
- Shukla, A. K., Sudhakar, K., & Baredar, P. (2016). Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology. Energy Reports, 2, 82-88. doi:10.1016/j.egyr.2016.04.001
- Dondariya, C., Porwal, D., Awasthi, A., Shukla, A. K., Sudhakar, K., S.R., M. M., & Bhimte, A. (2018). Performance simulation of grid-connected rooftop solar PV system for small households: A case study of Ujjain, India. Energy Reports, 4, 546-553. doi:10.1016/j.egyr.2018.08.002
- Charfi, W., Chaabane, M., Mhiri, H., & Ournot, P. (2018). Performance evaluation of a solar photovoltaic system. Energy Reports, 400-406.
- Debbarma, M., Sudhakar, K., & Baredar, P. (2017). Comparison of BIPV and BIPVT: A review. Resource-Efficient Technologies, 3(3), 263-271. doi:10.1016/j.reffit.2016.11.013
- Garni, H. A., & Awasthi, A. (2017). Techno-economic feasibility analysis
  of a solar PV grid-connected system with different tracking using
  HOMER software. 2017 IEEE International Conference on Smart Energy
  Grid Engineering (SEGE). doi:10.1109/sege.2017.8052801
- Ussiri, D. A., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. Basingstoke, England: Springer.
- Kassem, Y.; Gökçekuş, H.; Çamur, H. (2018). Economic assessment of renewable power generation based on wind speed and solar radiation in urban regions. Global J. Environ. Sci. Manage., 4(4), 465-482.
- Kassem, Y., & Gökçekuş, H. (2018). GHG emissions and energy performance of 1MWp grid-connected solar PV plant at Lefke in Northern Cyprus: a Case study. Disaster Science and Engineering.
- Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473. doi.org/10.5194/hess-11-1633-2007

#### **AUTHORS PROFILE**

**Prof. Dr. Hüseyin Gökçekuş** completed his Ph.D. in Hydrogeology at Graduate School of



Applied Sciences of Middle East Technical University in 1990. currently works at the Faculty of Civil and Environmental Engineering, Near East University. does research in Geology, Hydrology and Environmental Engineering.





Assist. Prof. Dr. Youssef Kassem graduated from the Department of Mechanical Engineering in 2009 (B.Sc.) of the Near East University TRNC, and obtained his master degree (M.Sc.) from the Department of Mechanical Engineering in 2011. In 2017 received his Ph.D. degree in Mechanical Engineering from Near east University Currently, He is a lecturer in the faculty of engineering. His current research focuses are on are analyzing the renewable sources in Cyprus.



Mrs. Shilan Abdi obtained her B.Sc. of Civil Engineering at university of Duhok in 2016. She is continuing her study of M.Sc. at Near East University Faculty of Civil and Environmental Engineering. She is interested in Environmental Engineering and Management.