Practical Realization of Three Phase Buck AC Converter Feeding Three Phase Star Connected RL Load using FPGA Real Time Controller

Venkatesha K, Vidya H A

Abstract: A three phase bidirectional AC to AC buck converter circuit using power MOSFET is designed, rigged up and analyzed with three phase star connected RL load for electrical parameters such as output voltage, input current, input power factor, harmonic profile and efficiency using FPGA real time controller. The various PWM techniques such as ramp-DC symmetrical PWM (RDSPWM), ramp-triangular asymmetrical PWM (RTAPWM), sinusoidal asymmetrical PWM type-1 [SAPWM1] and sinusoidal asymmetrical PWM type-2 [SAPWM2] techniques are generated using FPGA real time controller in order to analyze the harmonic profile, input power factor and efficiency of the converter. It is required to consider both harmonic profile and input power factor in order to increase the efficiency of power electronic converter. It is observed from experimental results that the RDSPWM technique gives lesser total harmonic distortion (THD) of output voltage and input current than other techniques. It is also observed that the SAPWM1 switching strategy gives high input power factor, more output voltage, high efficiency and moderate improvement of harmonic profile for the entire range of modulation index MI compared to other PWM techniques. Hence SAPWM1 technique is preferred for AC to AC converter than other techniques that renders easy filtration at lower cost.

Index Terms: AC Chopper, RDSPWM, SAPWM1, SAPWM2, RTAPWM techniques, input power factor, THD, efficiency, FPGA real time controller

I. INTRODUCTION

AC Voltage controllers are predominantly used in industries in the areas of heat control, illumination control, furnaces and AC drives. These AC to AC converters have sluggish response, poor input power factor even for resistive loads and elevated scale of lower order harmonics (LOH) at both supply and load sides. Hence bulky filters are required to reduce LOH in the line current, load voltage and current. These controllers are not suitable for voltage sag or swell corrections [1]. Auto transformers used for voltage regulation applications offers some advantages such as durability and reliability. Automatic regulation is achieved by controlling the winding ratio using stepper or servo motors results in slow response. Hence various topologies of AC choppers have been designed to overcome all these drawbacks [2-15].

II. WORKING PRINCIPLE OF THREE PHASE AC TO AC CONVERTER

Fig. 2 shows the three phase buck AC converter circuit comprising six BBSS sets with snubber elements. Three switch sets are in series with lines of the supply and other three sets are across the three phase load for freewheeling operation. The enhancement type MOSFETs have least turn on and turn off times and hence suitable for high switching frequency operation. The basic modes of operation of three phase converter includes power flow from source to load, freewheeling operation and power flow from load to source.

Fig. 1 shows the block diagram of three phase buck AC to AC converter with control circuit.
Practical Realization of Three Phase Buck AC Converter Feeding Three Phase Star Connected RL Load using FPGA Real Time Controller

Fig. 2 Three phase buck converter circuit connected to three phase Y connected RL load

It is required to give the proper path the load inductor current that could be positive or negative by turning on additional switches in order to freewheel the energy across load or supply back to source. Fig. 3(a) and (b) shows the switching pattern used to control the switches M1 to M12 of the converter. It is observed from this pattern that three switches are given modulating signal [symmetrical or asymmetrical PWM switching patterns] and remaining three switches are turned on additionally in order to provide path for inductor current in line series switches M1 to M6. Every switch conducts for 180° either with modulating signal or turned on for half a cycle. The switching pattern with respect to modulating signals at every 60° will be 5 – 6 – 1, 6 – 1 – 2, 1 – 2 – 3, 2 – 3 – 4, 3 – 4 – 5, 4 – 5 – 6 and back to 5 – 6 – 1 after one cycle.

III. SWITCHING PULSES GENERATION

Fig. 3(b) Switching strategy for load side connected BBSS

The amplitude and frequency of carrier wave remains same for a particular set of frequency. But the Amplitude of reference signals are required to vary in order to vary duty ratio K or MI which in turn change several electrical parameters. The frequencies of carrier waves chosen are 4.2 kHz, 4.8 kHz, 5.4 kHz and 6 kHz in order to eliminate harmonics up to 100th order. This results in shifting harmonic profile from lower to higher range of harmonic order that ultimately results in easy filtration using small filter elements. The ZCD pulses and PWM pulses are used in logical circuits in order to generate pulses to six sets of BBSS of the three phase converter. The logical operation remains same for all the PWM control strategies considered for the analysis. The ZCD pulses and its negation of each phase such as ZCD_a, ZCD_b, ZCD_c, ZCD_d, ZCD_e and ZCD_f are fed to switches M7 to M12 respectively. The freewheeling switches M7 to M12 are turned on for half a cycle [10 ms] by providing either ZCD or complemented ZCD pulses of different phases. During positive half cycle of the supply phase 'a', switch M7 is turned on to freewheel the energy stored in the inductance of load phase ‘a’ for positive inductor current or else fed back to supply through line series switches. Similarly, during negative half cycle of supply phase ‘a’, switch M8 is turned on for freewheeling operation else inductor energy is fed back to supply through line series switches.

A. Switching Pulse Generation using SRDPWM Technique

In case of RDSPWM technique, variable DC voltage as reference signal is obtained by using potential divider and then fed to FPGA through a single ADC circuit. High frequency carrier waves are generated by using VHDL program and then compared with reference signals in order to generate continuous PWM pulses.
These continuous PWM pulses are ORed with three phase ZCD and inverted ZCD pulses for generating switching pulses of switches M1 to M6.

C. Switching Pulse Generation using RTAPWM Technique

In case of RTAPWM technique, three phase ZCD pulses ZCDa, ZCDb, and ZCDc fed to FPGA are taken as reference signal for generating three phase ramp signals. The slope of these ramp pulses is varied by changing the frequency of counter variable that are used to generate ramp signals. Hence modulation index is varied in the VHDL program without using external potential dividers. But RDSPWM and SAPWM techniques uses external potential dividers for variation of reference signals such as DC and rectified AC signals. Fig. 7 clearly shows that width of asymmetrical PWM pulses increases gradually with respect to the slope of the ramp from 0 to 180°.

IV. ANALYSIS OF OUTPUT VOLTAGE AND CURRENT WAVEFORMS OF USING POWER QUALITY ANALYZER

Fig. 8 (a) Waveforms of three phase load voltages [UT] and currents [LT] of three phase converter fed to static inductive load at K=0.5, Fs=6 kHz in RDSPWM technique
Practical Realization of Three Phase Buck AC Converter Feeding Three Phase Star Connected RL Load using FPGA Real Time Controller

Fig. 8 (b) Waveforms of three phase load voltages [UT] and currents [LT] of three phase converter fed to dynamic inductive load such as induction motor at MI=0.8, Fs=6 kHz in SAPWM1 technique

Fig. 8(a) upper trace [UT] shows the three phase output voltages whose peak value is 325.27 V [\(\sqrt{2}\) times the rms value of phase voltage 230 V]. It has 60 chopped pulses per half cycle at duty ratio K=0.5 and number of pulses per half cycle P=60 [switching frequency \(F_s=6\) kHz]. These load phase voltages \(V_{an}, V_{bn}\) and \(V_{cn}\) are balanced and displaced by 120° with respect to each other. Fig. 8 (a) lower trace [LT] shows the output line currents \(i_a, i_b\) and \(i_c\) lagging from phase voltage by small angle of 28° [Load power factor angle]. This three phase converter circuit is also fed to 400V, 50 Hz, 0.5HP fractional load star connected three phase induction motor to analyze the output voltage and current waveforms as shown in Fig. 8 (b). In this case, the three phase load currents are almost sinusoidal in nature and have low THD values compared to static inductive loads. However the entire analysis is concentrated on static RL load to analyze electrical parameters.

Fig. 9 Frequency response of source current: plot of \(I_s\) amplitude versus harmonic order

Fig. 10 Frequency response of output phase voltage: plot of \(V_o\) amplitude versus harmonic order

Power quality analyzer [HIOKI PW3198, 3 voltage channels and 4 current channels] is used to measure true rms voltage, current, power factor and efficiency. The display shows harmonic order up to 50th order. The voltage and current waveforms are recorded for further harmonic analysis up to 100th order. These voltage and current samples [400 samples per cycle] are loaded into harmonic_analyzer.m file of MATLAB software package to generate harmonic order up to 100th order. The program is written to display harmonic bar chart, sensed signal display, THD of the signal and generation of harmonic order as per user requirement. The frequency response of source current and output voltage in RDSPWM technique is as shown in Fig. 9 and 10 respectively. The THD(I_s) is reduced from 48% to 9.29% for variation of switching frequency from 4.2 kHz (I_s83, I_s85) to 6 kHz (I_s119, I_s121) which is not visible, since harmonic order up to 100th order is considered) at constant duty ratio of K=0.5. Similarly it is observed in Fig. 10 that the harmonic order is shifted from \(V_{O83}, V_{O85}\) to \(V_{O119}\) and \(V_{O121}\) range [out of range, hence not visible in the plot] for variation of switching frequency from 4.2 kHz to 6 kHz respectively.

Fig. 11 Comparison of Efficiency versus K for different switching frequencies in RDSPWM technique

Fig. 11 shows the comparison of efficiency versus duty ratio K for different switching frequencies in RDSPWM technique. It is observed from the plot that efficiency increases from 72% to 94% in practical results for the variation of duty ratio from 0.4 to 0.9. There is slight reduction in efficiency between the curves of different frequencies due to switching losses at higher switching frequencies.

Fig. 12 Comparison of THD of load phase voltage versus K or MI in different PWM techniques
Fig. 13 Comparison of THD of source current versus K or MI in different PWM techniques

Fig. 12 and 13 shows the plot of total harmonic distortion of output phase voltage and source current with respect to K / MI for different PWM techniques at fixed switching frequency of Fs=6 kHz. In general, the THD of output voltage and supply current are less than or equal to 17% in all the cases at Fs=6 kHz. It is observed from the plot that THD of output voltage and source current are lesser in case of RDSPWM and higher in case of SAPWM2 technique than other techniques.

For instance, the practical results of THD(is) are 10.5% at K=0.4 and 9.5% at K=0.9 in RDSPWM technique. Similarly the practical results of THD(Vo) gives 11.9% at K=0.4 and 9.6% at K=0.9. RTAPWM technique gives better results of harmonic profile than other asymmetrical PWM techniques. SAPWM2 technique offers poor harmonic profile in hardware results. SAPWM1 gives moderate performance as per as harmonic profile is concerned. Hence RDSPWM technique is better suited for changing the entire harmonic profile of three phase converter for safety zone.

Table 1 Power factor and efficiency with respect to K / MI in various PWM techniques

<table>
<thead>
<tr>
<th>K / MI</th>
<th>Power Factor</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.812</td>
<td>0.885</td>
</tr>
<tr>
<td>0.5</td>
<td>0.860</td>
<td>0.943</td>
</tr>
<tr>
<td>0.6</td>
<td>0.910</td>
<td>0.956</td>
</tr>
<tr>
<td>0.7</td>
<td>0.919</td>
<td>0.970</td>
</tr>
<tr>
<td>0.8</td>
<td>0.930</td>
<td>0.980</td>
</tr>
<tr>
<td>0.9</td>
<td>0.950</td>
<td>0.985</td>
</tr>
</tbody>
</table>

Table 1 shows the practical data of true input power factor and efficiency of three phase converter for different PWM techniques. It is observed that true input power factor obtained from practical results is better in case of SAPWM1 technique which increases from 0.926 to 0.985 for the variation of MI from 0.4 to 0.9. RDSPWM technique is simple to implement and yields better harmonic profile than other technique. RTAPWM technique, even though has better harmonic profile than SAPWM1 technique gives lower PF values resulting in lesser efficiency of the converter. SAPWM1 technique in both simulation and practical results gives better true PF resulting in higher efficiency of the converter than other PWM techniques.

V. CONCLUSION

A three phase AC to AC buck converter with power switches is designed, rigged up and analyzed for true input PF, harmonic profile and efficiency by implementing RDSPWM, RTAPWM, SAPWM1 and SAPWM2 techniques using FPGA real time controller. The rms value of the output voltage, output current and source current can be significantly increased by varying the duty ratio K in case of symmetrical PWM control strategy and modulation index MI in case of asymmetrical PWM control strategies independent of variation in switching frequency. SAPWM1 technique even though complex as far as hardware circuitry is concerned, being recommended in order to improve input power factor, harmonic profile and hence overall efficiency of three phase buck AC converter. SAPWM1 technique gives better true PF resulting in higher efficiency of the converter than other PWM techniques.

REFERENCES

Practical Realization of Three Phase Buck AC Converter Feeding Three Phase Star Connected RL Load using FPGA Real Time Controller

AUTHORS PROFILE

Venkatesha K received his B.E. degree in Electrical and Electronics Engineering and M.E. in Power electronics from Bangalore University, Bangalore in 1997 and 2005 respectively. He was class topper in M.E from Bangalore University. He worked as a Lecturer for Golden Valley College of engineering, Kolar Gold Fields from 2000 to 2004. He is currently working as an Associate Professor in BNM institute of Technology, Bengaluru. He has completed his Ph.D in electrical sciences from Global Academy of technology R&D centre under Visvesvaraya Technological University, Belgaum. His research interests are in the areas of Power Electronics and Power Quality.

Vidya J.A received her B.E. degree in Electrical and Electronics Engineering from NIE, Mysore University, Mysore and the M.Tech. in Computer Application in Industrial Drives from NIE, Visvesvaraya Technological University, Belgaum in 1996 and 2001 respectively. She has secured First rank in M.Tech from Visvesvaraya Technological University. She has completed her Ph.D in electrical sciences in 2008 from M.S. Ramaiah R&D centre under VTU. was a Lecturer in KVG College of Engineering, Sullia from 1997 to 2003 and she has handled various positions at BNMIT, Bangalore from 2003 to 2015. Currently she is working as a professor, Department of Electrical & Electronics Engineering, Global Academy of technology, Bangalore. Her research interests are in the areas of Signal Processing, High Voltage and Power Quality.