Abstract: This paper is to analyze the EMP coupling to cables using 3D EM Modeling and Simulation Analysis. Bounded wave transmission line structure as per MIL-STD 461, RS105 EMP requirement in terms of peak electric field of 50KV/m with rise time-2.3ns and pulse width-25ns was developed. Single conductor cable, RF Coaxial cable were modeled. EMP Coupling to cables was carried out by placing the cable under generated EMP field in terms of induced voltage and currents due to EMP fields. EMP coupling to active line with matched termination also analyzed.

Index Terms: Electromagnetic pulse (EMP), Bounded wave Transmission line, cables.

I. INTRODUCTION

ELECTROMAGNETIC PULSE-

An electromagnetic pulse is a short burst of electromagnetic energy. EMP arises from two principal sources, the first of which is the gamma rays emitted by the nuclear detonation. The second significant type of EMP from high altitude bursts is a low frequency, low amplitude field caused by explosion plasma motion in the upper atmosphere. This environment is commonly referred to as magneto-hydrodynamic EMP or MHD EMP. EMP have devastating effect on the unprotected electronics systems.

Gamma rays represent about 1/1000th of the total bomb energy and are emitted within ten billionths of a second. The amount of gamma emitted by a one- megaton detonation is about 4 X 1012 Joules. The gamma rays, by a process known as the “Compton Effect,” strip electrons from air molecules to create a large-scale electron current in the upper atmosphere. This electron current is deflected by the earth’s magnetic field and thereby radiates an intense electromagnetic pulse (EMP) over extensive portions of the earth’s surface. Effects extend to ground areas within the line-of-sight of the burst as shown in fig.

The second significant type of EMP from high altitude bursts is a low frequency, low amplitude field caused by explosion plasma motion in the upper atmosphere. This environment is commonly referred to as Magneto hydrodynamic EMP or MHD EMP. The plasma created by the explosion perturbs the earth’s magnetic field which, in turn, generates electric fields on the Earth’s surface and the upper layers of the ground.

COAXIAL CABLE-

Coaxial cable is a two conductor electrical cable consisting of core as the inner conductor, shield as outer conductor and with dielectric as an insulating space between inner conductor and outer conductor. For the transmission of Radio Frequency energy coaxial cables are used. Cables can be a main source of transfer for EMI/EMP, both as a source and receiver. As a source, the cable can either act as an antenna radiating noise or conduct noise to other equipment. As a receiver, the cable can pick up EMI/EMP radiated from other sources. Any current-carrying conductor radiates electromagnetic field, including a cable.
Any conductor including cable will pick up energy from any existing electromagnetic field around it. These effects are often undesirable. Due to unwanted transmission of energy it may adversely affect nearby equipment and even other parts of the same piece of equipment and in the second case, unwanted pickup of noise which may mask the desired signal being carried by the cable, or, if the cable is carrying power supply, distort them to such an extent as to cause equipment malfunction.

II. BOUNDED WAVE TRANSMISSION LINE STRUCTURE

Transverse electromagnetic (TEM) cell type of triangular transmission line with a matching termination resistor bank will be best structure for generating EMP pulse with minimum distortions. Generally radiating lines will be made with multiple metal wires terminated with distributed load resistors. Bottom ground plane resistors will of metallic mesh for simulation the TEM cell type structure.

In the triangular radiation line, the pulse produced by the HV generator is transformed into a TEM electromagnetic field travelling in the direction of the load. Because there is no discontinuity along the line, no other electromagnetic modes than TEM are exited. Some reflections are induced due to the construction of load.

In the parallel plate, between the slope (triangular part) and the flat part the wave is travelling up to the transition placed. In this region other modes than TEM are produced that induce reflections and field distortions. At the end of the flat part process is repeated and finally the reflections are influenced by terminated load.

Hence we are going to consider the triangular plate structure for the EMP test set up to perform RS105 tests according MIL-STD 461-E/F.

MODELING OF BOUNDED WAVE TRANSMISSION LINE STRUCTURE

Modeled bounded wave transmission line structure with matched terminated resistors for generating standardized EMP field. As an input, Double Exponential voltage pulse is given and it is measured at equipment zone area.

III. EMP COUPLING ANALYSIS

A. SINGLE CONDUCTOR

(a) SINGLE CONDUCTOR CABLE PLACED LENGTH WISE INSIDE THE UNIFORM FIELD AREA UNDER BOUNDED WAVE TRANSMISSION STRUCTURE

Modeled bounded wave transmission line structure with matched terminated resistors by maintaining the impedance 110 ohms according to the width by height ratio for generating standardized EMP field. As an input, Double Exponential voltage pulse is given and it is measured at equipment zone area.
(b) SINGLE CONDUCTOR CABLE PLACED ALONG THE WIDTH INSIDE THE UNIFORM FIELD AREA UNDER BOUNDED WAVE TRANSMISSION STRUCTURE
Single conductor cable is placed inside the bounded wave structure which is shorted on both the sides. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

(c) SINGLE CONDUCTOR PLACED INSIDE THE BOUNDED WAVE TRANSMISSION STRUCTURE WITH INCLINATION OF 30 DEGREE ALONG THE LENGTH
Single conductor cable is placed with an inclination of 30 degree inside the bounded wave structure which is shorted on both the sides. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.
Coaxial cable is placed inside the bounded wave structure which is terminated with 50 ohm resistors on one side and source on other end. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

B. COAXIAL CABLE PLACED INSIDE THE BOUNDED WAVE TRANSMISSION STRUCTURE

Coaxial cable is placed inside the bounded wave structure which is terminated with 50 ohm resistors on both the sides. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

C. LIVE COAXIAL CABLE PLACED INSIDE THE BOUNDED WAVE TRANSMISSION LINE STRUCTURE

Coaxial cable was placed inside the bounded wave structure which was terminated with 50 ohm resistors on one side and source on other end. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

D. COUPLING ANALYSIS AT DIFFERENT LENGTH-

(a) 4m length

Coaxial cable was placed inside the bounded wave structure which was terminated with 50 ohm resistors on one side and source on other end. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.
Coaxial cable was placed inside the bounded wave structure which was terminated with 50 ohm resistors on one side and source on other end. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.
E. COUPLING AT DIFFERENT HEIGHT-

(a) Coaxial cable placed 0.3m above the ground plate-

Coaxial cable was placed at 0.3m above the ground inside the bounded wave structure which was terminated with 50 ohm resistors on both the side. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

(b) Coaxial cable placed 0.5m above the ground plate-

Coaxial cable was placed at 0.5m above the ground inside the bounded wave structure which was terminated with 50 ohm resistors on both the side. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.

(c) Coaxial cable placed 0.6m above the ground plate-

Coaxial cable was placed at 0.6m above the ground inside the bounded wave structure which was terminated with 50 ohm resistors on both the side. Double exponential pulse is given as input with rise time 1.8 ns and fall time 2.3 ns.
Bounded Wave Transmission Line Structure is modeled. The electric field at different positions \((h/3, w/2)\) within EUT volume is measured using E-Field probe. Modeled different cables (single conductor cable and RF Coaxial cable). EMP Coupling to cables was carried out by placing the cables under generated EMP field in terms of induced voltage and currents due to EMP fields. EMP coupling to active line with matched termination also analyzed. EMP coupling is less in Coaxial Cable as compared to the Single conductor cable. Instead of placing the cable along the length, it is suitable along the width. Coupling to the cable increases as the height increases. So it is recommended to keep the cable along the ground to minimize the coupling effect. All this analysis can be used in different applications. One of the major applications is in the defense sector. Cable routing in Defense system (aircrafts, ships, missiles, etc) Defense routing consist of n number of modules which are connected through cables of different kinds. So by using this analysis orientation and routing of cable is possible.

V. CONCLUSION

Table 1 Comparision of current in cables across near end and far end

<table>
<thead>
<tr>
<th>CABLES</th>
<th>SINGLE CONDUCTOR ALONG THE LENGTH</th>
<th>SINGLE CONDUCTOR WITH INCLINATION OF30 DEGREE</th>
<th>SINGLE CONDUCTOR ALONG THE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEAR END</td>
<td>107 A</td>
<td>160 A</td>
<td>70 A</td>
</tr>
<tr>
<td>FAR END</td>
<td>105 A</td>
<td>150 A</td>
<td>70 A</td>
</tr>
</tbody>
</table>

Table 1 Comparisons of current in Coaxial Cable at different length.

<table>
<thead>
<tr>
<th>LENGTH(in meters)</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Near End</td>
</tr>
<tr>
<td>4m</td>
<td>127A</td>
</tr>
<tr>
<td>3m</td>
<td>125.5A</td>
</tr>
<tr>
<td>2m</td>
<td>90A</td>
</tr>
</tbody>
</table>

Table 1 Comparisons of Current in Coaxial Cable at different height

<table>
<thead>
<tr>
<th>CABLE PLACED AT DIFFERENT HEIGHT</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Near End</td>
</tr>
<tr>
<td>0.3m</td>
<td>150A</td>
</tr>
<tr>
<td>0.5m</td>
<td>250A</td>
</tr>
<tr>
<td>0.6m</td>
<td>300A</td>
</tr>
</tbody>
</table>

Published By: Blue Eyes Intelligence Engineering & Sciences Publication
ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude to Dr. P.V.Y Jayasree, Professor and Head of Department of Electronics and Communication Engineering, GITAM (Deemed to be University) for her exceptional guidance, invaluable advice and wholehearted support. I am very much grateful to Mr. B.Venkata Ramana, Scientist-C of SAMEER-CE3 Visakhapatnam for his guidance.

REFERENCES

1. https://www.cst.com
2. https://www.montena.com
3. Referred to SAMEER, Vizag website-ce3.sameer.gov.in.
8. Interaction notes of EMP.

AUTHORS PROFILE

PRITI MANDAL pursuing M.Tech degree in Radio Frequency and Microwave Engineering from GITAM (Deemed to be University). She received her B.Tech degree First class with distinction in E.C.E from JNTU, Kakinada in 2017.

B. VENKATA RAMANA received B.Tech degree First class with distinction in E.C.E from JNTU, Kakinada in 2010. In 2012, he joined SAMEER –Centre for Electromagnetics, Chennai, India, as Scientist where he was involved in EMC test,

Dr. P.V.Y JAYASREE received B.E and M.E in ECE from AU in 1989 and 1999 respectively. She obtained Ph.D degree from JNTU, Kakinada in 2010. She is currently a Professor and Head of Department of ECE, GITAM (Deemed to be University). Her major interests are in the area of EMI/EMC, Antenna and Microwaves.