Five Element Printed Modified Vivaldi Array Covering 5.3 to 20 GHz

Aparna Harshitha Chitturu, Bhagya Lakshmi Munagoti, Narasimha Sastry Neti

Abstract: Isolated singular Vivaldi antennas have been in vogue for multi octave band communications and EW applications. For shared aperture EW applications phased array antennas are being used extensively. For such applications the spacing between array elements is required to be less than 0.57λ to reduce grating and side lobes, where the wavelength (λ) at the highest frequency. Single antennas covering 6 to 18GHz when inserted in an array perform differently due to mutual coupling effects. In this paper, the single isolated antenna is taken as a reference antenna and inserted in the array and parametric studies have been carried out to arrive at an optimum solution for maximizing VSWR and pattern bandwidth in a five element array environment. A S11 of less than -7.5 dB over 5.3-18 GHz has been obtained in array environment. Satisfactory scanning of ±40° over 5.3 to 17.5 GHz is obtained for an 8 element linear array and results are presented.

Index Terms: Multi octave band, phased array, Vivaldi.

I. INTRODUCTION

Frequency independent antennas covering multi octave bandwidths such as ridged horns, Archimedean spirals, log spirals, loaded printed antennas, Printed Vivaldi antennas, have been widely used for communications and electronic warfare applications [1-7]. In recent times there has been considerable interest in various variants of Tapered Slot Antennas (TSA) due to their ease of printing and hardware realization. For shared aperture applications in electronic warfare systems, with common aperture for the electronic support measure subsystem and electronic counter measure subsystem, phased array antennas are emerging as a clear choice, particularly to reduce radar cross section of various types of antennas.

Isolated single Vivaldi antenna covering multi octave bandwidths have been reported in literature [8-10]. However, the basic requirement in phased array systems is to scan the main beam to ±45° or ±60° in both Elevation and Azimuthal planes. Grating lobes are a major problem and to avoid such lobes it is necessary that the gap between the elements of the array be restricted to < 0.57λ. for scanning to ±45°. This puts a severe constraint on the design of TSA. For an antenna operating over 6 to 18GHz the spacing between the antenna elements is required to be 0.57λ, i.e. 0.96cm at 18GHz. For this spacing, the aperture size at 6 GHz becomes 0.192cm, which is electrically very small and the input resistance of the antenna becomes very small. It is easy to realize the TSA from 8 to 18GHz. However, the antenna becomes sensitive below 8GHz and requires minute and critical adjustments. A few designs can be found in literature in this regard, where the single antennas can be made to work from 5.0GHz to 20GHz. A dual polarized antenna with an aperture range of 9mm operates from 6-18 GHz with wide angle scanning capability using FDTD technique has been reported [11]. A new method for increasing gain, directivity, bandwidth of the antenna using a parasitic elliptic patch with an aperture size of 66mm covering 6-21 GHz has been presented [12]. Also an antenna having a small aperture size of 14.5mm with scan angle of 45°, operating over 3-9 GHz has been reported [6]. Another BAVA antenna of aperture size 44mm operating over a wide bandwidth of 1-20GHz also reported [13]. A novel small aperture tapered and covering a bandwidth of 7.7-18 GHz in hardware has also been reported [14]. A compact antipodal Vivaldi antenna (AVA) with rectangular slots & shaping of taper, designed over 6-18 GHz is also reported in the literature [15].

In this present paper, the reference antenna taken is a single element having an aperture size of 9.5mm over 5.6-20 GHz frequency range reported in our earlier paper [16]. The same reference antenna when placed in an array invariably has high VSWR between 5.6GHz to 8GHz and requires careful adjustment of various parameters. In this paper, this problem has been addressed and parametric analysis has been taken for a single antenna in a 5 element linear array environment. Till now no such parametric studies of a single antenna in array environment are reported. As an extension of this design, an eight element linear array antenna has been designed using HFSS software and also the scanning to 40° for this array has been investigated and results presented.

II. ANENNA DESIGN

The design of the modified Vivaldi radiator is shown in Fig.1. Modifications with respect to the earlier reported papers are the inclusion of two circular cavities & an open circuited rectangular stub. Also the exponential taper characteristic of the conventional Vivaldi antenna has been modified with super imposition of a sinusoidal profile on exponential taper reported in our earlier paper [16]. This antenna has been taken as a reference antenna and it is used for designing a five element array. Also, with the central element excited, the return loss and the radiation patterns over 6-18 GHz is studied. The structure of the five element linear array is shown below Fig 2. The spacing between elements is 9.5 mm which is the required dimension to scan the array beam to ±45°.
Taper length and taper rate are the two key parameters in taper design. The tapered slot line is designed with the following equations [5].

\[Y = C_1 e^{Rz} + C_2 \] \hspace{1cm} (1)
\[C_1 = \frac{(y_2 - y_1)}{(e_2^{RZ2} - e_1^{RZ1})} \] \hspace{1cm} (2)
\[C_2 = \frac{(y_1 e_2^{RZ2} - y_2 e_1^{RZ1})}{(e_2^{RZ2} - e_1^{RZ1})} \] \hspace{1cm} (3)

Where \((z_1, y_1)\) and \((z_2, y_2)\) are end points of the exponential curve, \(C_1\) & \(C_2\) are constants, and \(R\) is the exponential taper rate.

\[Fig. 1. \text{Antenna Geometry.} \]

The five element linear array is shown in Fig 2.

\[Fig. 2. \text{Five element linear array.} \]

III. PARAMETRIC ANALYSIS

Parametric analysis has been done using ANSYS HFSS software with the central element excited and the other antenna elements terminated. The basic design is derived from our earlier reference paper as already printed out above [18]. Key parameters affecting the VSWR of the antenna have been identified as follows:

- Length of the stub (\(L_1\))
- Exponential growth rate (\(a\))
- Sinusoidal amplitude (\(k\))
- Dielectric portion Length (\(L_6\))
- Width of the slot (\(W_3\))

With the above parametric variations, dimensions of the antenna have been optimized to obtain s11 of < 7.5 and satisfactory directional patterns from 5.3 to 18.0 GHz.

A. Variation of Length of the stub (\(L_1\))

The stub Length of \(L_1\) is changed from 17mm to 19.3mm. The return loss variation is significant at lower frequencies. However, no such variation is observed over 8.5 to 18 GHz. For an optimum value of \(L_1=19.3\)mm a return loss of less than -7.5 dB is obtained over 6 to 18 GHz as shown in Fig.3.

B. Variation of Exponential growth rate (\(a\))

The growth rate is analyzing from 0.6 to 0.8 and the variations in the return loss plot are as shown in Fig.4. The other growth rate values have not met desired bandwidth requirement. The maximum bandwidth is achieved for \(a=0.6\) over 6-18 GHz while the other values have peaks above -7.5 dB over 13.4-14.6 GHz from the plots.

C. Variation of Sinusoidal amplitude (\(k\))

In this modified Vivaldi radiator, the exponential taper is super imposed by a sinusoidal function. The amplitude of the sinusoidal function ‘\(k\)’ is changed from 0.1 to 0.4 and the return loss plots are as shown in Fig.5. \(K=0.2\) is chosen as optimum value. Significant changes in return loss plot at the low frequency limit can be seen for other values of ‘\(k\)’.

D. Variation of Dielectric portion Length (\(L_6\))

The length of the dielectric portion of the antenna ‘\(L_6\)’ is varied from 2mm to 8mm and the suggestive variations in the return loss are observed over 9.5-18 GHz as shown in Fig.6. The optimized value
of \(L_6 \) is 8mm for maximum bandwidth.

Fig. 6. Return loss plot with dielectric portion length ‘\(L_6 \)’ variations.

E. Variation of the slot Width (\(W_5 \))

The slot width ‘\(W_5 \)’ has significant effect on return loss. It has been varied from 0.1mm to 0.3mm and the corresponding S11 curves are as shown in Fig.7. A slot width of 0.3mm is optimum.

Fig. 7. Return loss plot with slot width ‘\(W_5 \)’ variations.

IV. RESULTS

Variation of return loss, gain, radiation patterns and scanning over 5-18 GHz are studied using HFSS software and the results obtained are presented below. The optimized dimensions are arrived at from the parametric studies of central element only excited and other elements terminated and these are given in table I.

TABLE I. OPTIMUM DIMENSIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimension (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>60.0</td>
</tr>
<tr>
<td>(W)</td>
<td>9.5</td>
</tr>
<tr>
<td>(L_1)</td>
<td>19.3</td>
</tr>
<tr>
<td>(L_6)</td>
<td>8.0</td>
</tr>
<tr>
<td>(W_5)</td>
<td>0.3</td>
</tr>
<tr>
<td>(a)</td>
<td>0.6</td>
</tr>
<tr>
<td>(K)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

A. Return Loss

A return loss of -7.5 dB is obtained over 5.3 to 20 GHz for the central element excitation in array environment and is shown in the Fig.8.

Fig. 8. Frequency vs. Return loss.

B. Active VSWR

For the central element excitation in array environment the active VSWR of less than 2.5 over 5.4 to 18GHz has been obtained as shown in the Fig.9.

Fig. 9. Frequency vs. Active VSWR.

C. Gain

Frequency vs. Gain plot over the frequency range 6-18 GHz is shown in Fig.10 and gain at 18 GHz is 6.3 dB

Fig. 10. Frequency vs. Gain.

D. Radiation Patterns

Radiation patterns of Elevation plane (solid) and Azimuthal plane (dotted) are shown in the Figs.11 (a-d). Satisfactory radiation patterns are obtained over 5.0-18 GHz. However, the return loss at 5.0 GHz is -6.0 dB. Hence, the antenna performance is satisfactory over 5.3 to 18.0 GHz.
environment. The spacing between elements is 9.5 mm. The maximum scan angle of the antenna without grating lobes depends upon the spacing between the elements in terms of wavelength is given by [11],

\[
d/\lambda \leq 1/(1+\sin \Theta_s)
\]

(4)

Where, \(d\) is the distance between elements, \(\Theta_s\) is the maximum scan angle. For the above spacing the maximum scan angle is 45°. The 8 element scanned radiation patterns over 5.3 GHz-18 GHz are shown in Fig.12 (a)-(e).

Fig. 11. Radiation patterns for central element in a five element linear array.

E. Scanning of 8 element linear array

An 8 element array has been designed using HFSS software with the element finalized in five element array
F. Proposed Robust Antenna Configuration

For making the antenna robust in environmental conditions, the proposed antenna will be immersed in rigid poly urethane foam of dielectric constant 1.4. A S_{11} of less than -7.5 dB over 4.8 to 23 GHz has been obtained. In this configuration, radiation patterns are satisfactory over 5 to 19 GHz.

Fig. 13. Frequency vs. return loss

Fig. 14. Frequency vs. Gain.

Fig. 15. Radiation patterns for five element linear array within a dielectric box.
V. SPECIFICATIONS OF PROPOSED ANTENNA

The proposed antenna specifications arrived from HFSS simulations are as follows:
1. Frequency: 5.3 to 20 GHz
2. VSWR: < 2.5
3. HPBW (bore sight): 39.8 at 20 GHz, 158.28 at 5.3 GHz
4. Maximum Side lobe level: -12 dB
5. Number of elements in the array: 8
6. Scanning: 40° (5.3 to 17.5 GHz)
7. Power Gain: -3.0 to 6.3 dB

VI. CONCLUSION

Single modified Vivaldi antenna operating over 5.6 GHz to 20 GHz has been taken as reference antenna and a 5element array design has been done using HFSS software. Substantial modifications of the single antenna are required to take care of mutual coupling effects. A S11 of < -7.5dB has been obtained over 5.3-20 GHz for the central element excitation in the five element array and acceptable radiation patterns have been obtained over 5.3 to 18GHz. Also using this antenna, an 8 element linear array has been designed and scanning of beam has been studied. Satisfactory scanning to 40° from 5.3 GHz to 17.5 GHz has been observed.

ACKNOWLEDGMENT

The authors would thank Director, EMR &IP, and DRDO for the excellent support given by them. They would also like to thank Dr. A. Ratna Prasad, Principal and Dr. K. S. Ramakrishna HOD, Dept. of ECE & V R Siddhartha Engineering College for their encouragement and support.

REFERENCES