Delay Approximation Model for Prime Speed Interconnects in Current Mode

Naraiah R, B.Balaji, Erigela Radhamma, Rajender Udutha

Abstract: There is enormous demand for high speed VLSI networks in present days. The coupling capacitance and interconnect delay play a major role in judging the behavior of on chip interconnects. There is an on chip inductance effect as we switch to low technology that leads to delay in interconnecting. In this paper we are attempting to apply second order transfer function designed with finite difference equation and transform Laplace at the ends of the source and load termination. Analysis shows that the current signaling mode in VLSI interconnects provide better time delay than the voltage mode.

Index Terms: VLSI Interconnect, Current mode, feedback scheme.

I. INTRODUCTION

As the number of transistors on a chip keeps increasing, on-chip communications will become a more crucial aspect of architectural design. Conventional electrical wires, normally driven by digital components using simplistic virtual signals have problems to address inside the scaling chip multiprocessor marketplace, in particular latency and strength. Worldwide cord latency remains highly constant, translating to a bigger relative latency for even reasonably-sized structures. In an effort to make sure sign pleasant, virtual repeaters and packet-switching routers need to be added to facilitate the transmission of lengthy distance communications, contributing further to the latency and power problems. As delivered in the references, signal is transmitting to a modern change signalling to 3 times more than the voltage mode signalling. Change display close to speed of light electric signalling the use of the reality that the signalling pace may expanded using punishing to energy spectrum destiny to indicators of high level frequency uses at modulations methods. However at strength intake turns into acceptable high of at which cases to max schemes desires to huge wiring on the top Meta metallic layers. The on-chip interconnect network’s speed and power consu mption emerge as importance at advance CMOS technology. It far tough through fulfil desire powers at overall specifications o contemporary performance of modern days systems on chip at multimode buffered processors in lengthy interconnect. In exchange repeaters circuits in which signalling schemes are advised to beyond the excessive-speed low-energy verbal exchange over lengthy on chip at which interconnects. In present day CMOS technology, processing at significant variation at device parameters in which could result in performance at which degradation of the signalling methods. First, current optical components aren’t easy to integrate into standard silicon CMOS manner, making it to manufacture with the current technologies without sacrificing electro-optical conversion performance. Additionally, while some on-chip lasers exist, most usually, off-chip lasers are used to provide the optical energy, moving the strength efficient operation off-chip.

II. LITERATURE REVIEW

The proposed scheme for Current mode signaling-bias includes the The transmitter part (Txr) and the receiver part (Rxr). The suggested transmitter (Txr) uses two drivers such as the -fb transmitter (Txr) with NAND and NOR doors for Current mode signaling. A put off detail in the proposed transmitter (Txr) controls the period for which the powerful driver is turned on and which the delay element controls. These cutting-edge sources’ bias voltages are produced from a specific bias circuit intended to ensure that modern-day through powerful and sensitive driving force remains stable across all process corners. A passive element such as Diode connected active device PMOS and NMOS is used by the suggested receiver (Rxr) followed by inverter connections

\[w(a + y) = w(a) + y w'(a) + \frac{y^2}{2!} w''(a) + O(y^3) \ldots (1) \]

\[w'(a) = \frac{w(a + y) - w(a)}{y} + O(y^1) \ldots \ldots \ldots (2) \]

Note that, even though we neglect terms of \(O(y^2) \) in the expression, as we divided through by \(y \) to obtain the derivative expression the approximation is correct to \(O(y^1) \) only.
Delay Approximation Model for Prime Speed Interconnects in Current Mode

Fig 1: Bias Current Mode Signaling

Fig 2: Weak Driver Signaling Mode

\[w(a + y) = w(a) + y \frac{y^2}{2!} w''(a) + O(y^3) \] \hspace{1em} (5)

\[w(a - y) = w(a) - y \frac{y^2}{2!} w''(a) + O(y^3) \] \hspace{1em} (6)

The effective driven would be considered, enabled when the input of the pre-levels are equivalent to output lines which are not present in the given logic.

Voltage mode interconnects:

\[w(a - y) = w(a) - y w'(a) + \frac{y^2}{2!} w''(a) + O(y^3) \] \hspace{1em} (3)

\[w'(a) = \frac{w(a) - w(a - y)}{y} + O(y^1) \] \hspace{1em} (4)

Current mode interconnects:

\[a = (L_i L_o C_i (R_1 + G_1)) \]

\[b = C_i (L o G_2 + R_1 L_1 G_2 + L_2 R G_1) \]

Fig 3: CMOS Voltage Mode Signalling

\[w(a + y) - w(a - y) = 2y w'(a) + 2 \frac{y^3}{3!} w'''(a) + O(y^4) \]

\[w'(a) = \frac{w(a + y) - w(a - y)}{2y} + O(y^2) \] \hspace{1em} (7)

Fig 4: RLC Interconnect Model

Fig 5: RLCG Interconnects
III. PROPOSED MODEL

Fig 6: Analysis of Interconnect Models

Fig 7: Transient Delay Comparison Model

Table 1: Delay Estimation

<table>
<thead>
<tr>
<th>Signalling mode</th>
<th>Delay (ns)</th>
<th>P Total (µw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Mode</td>
<td>2.12</td>
<td>21.01</td>
</tr>
<tr>
<td>Current Mode</td>
<td>0.420</td>
<td>101.01</td>
</tr>
<tr>
<td>Proposed Current Mode</td>
<td>0.010</td>
<td>8.31</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

This paper presents delay estimation/comparison of high speed VLSI interconnects. This paper represents the current study to estimate/compare the exact delay of current-mode in VLSI interconnections and to find the interaction between delay for various lengths, line inductances and load capacitances uses the existing voltage mode. All the benefits give current mode signalling an upper edge over the voltage mode signalling. This process is carried out in Cadence tool.

REFERENCES

Delay Approximation Model for Prime Speed Interconnects in Current Mode

AUTHORS PROFILE

NARAIAH, R, DEPT OF ECE, RESEARCH SCHOLAR AT SSSUTMS, SEHORE, MP

Dr B. Balaji, Associate Professor In ECE Department, KLEF (Deemed To Be University), Vaddeswaram, His Research Area VLSI.

Dr. Erigela Radhamma, Associate Professor In ECE Department, Brilliant Institute Of Engineering & Technology, Her Research Interests Are VLSI And Communication

Rajender Udutha, Dept Of Ece, Research Scholar, At Sssutms, Bhopal