
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2662

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919



Abstract: Effective software system must advance to stay

pertinent, however this procedure of development can cause the

product design to rot and prompt essentially diminished efficiency

and even dropped projects. Remodularization tasks can be

performed to fix the structure of a software system and evacuate

the disintegration brought about by programming advancement.

Software remodularization comprises in rearranging software

entities into modules to such an extent that sets of substances

having a place with similar modules are more comparable than

those having a place with various modules.However,

re-modularizing systems automatically is challenging in order to

enhance their sustainability. In this paper, we have introduced a

procedure of automatic software remodularization that helps

software maintainers to enhance the software modularization

quality by assessing the coupling and attachment among

programming components. For precision coupling measures, the

proposed technology uses structural coupling measurements. The

proposed methodology utilizes tallying of class' part capacities

utilized by a given class as a basic coupling measure among

classes. The interaction between class files measures structural

connections between software elements (classes). In this paper,

probability based remodularization (PBR) approach has been

proposed to remodularize the software systems. The file ordering

process is done by performing probability based approach and

remodularization is done based on the dependency strength or

connectivity among the files. The proposed technique is

experimented on seven software systems. The efficiency is

measured by utilizing Turbo Modularization Quality (MQ) that

promotes edge weighing module dependence graph (MDG). It very

well may be presumed that when comparing performance with the

subsisting techniques, for instance, Bunch – GA (Genetic

Algorithm), DAGC (Development of Genetic Clustering

Algorithm) and Estimation of Distribution Algorithm (EDA), the

proposed methodology has greater Turbo MQ value and lesser

time complexity with Bunch-GA in the software systems assessed.

Index Terms: Code Dependency, Dependency Matrix,

Probability, Remodularization, Software System, Software System

Maintenance, Turbo Modularization Quality.

I. INTRODUCTION

The structure of a software system primarily affects its

practicality. To improve viability, programming frameworks

are typically composed into subsystems utilizing the

develops

Revised Manuscript Received on July 05, 2019.

Bright Gee Varghese R, Assistant Professor, Karunya Institute of

Technology and Sciences, Coimbatore, India

Dr.KumudhaRaimond, Professor, Karunya Institute of Technology

and Sciences, Coimbatore, India

Dr. JenoLovesum, Associate Professor, Presidency University,

Bengaluru, India.

of bundles or modules.Notwithstanding, amid programming

development the structure of the software system experiences

consistent alterations, floating away from its unique plan,

regularly decreasing its quality. In software engineering,

programming upkeep in the created programming framework

may require alterations to change the prerequisites of client.

In such cases, support ends up fundamental. The product

support process involves a circumstance of programming

building execution that happen after the product has been

conveyed to the client. The idea of programming support and

development of frameworks was first proposed by Lehman

[21], who did a few perceptions. One of the fundamental

perceptions was that vast programming frameworks are never

finished, proceed to develop and progressively complex

some days. Large software systems are evolving difficult and

complex to maintain due to the following problems:

 Constant changes: The software environment is

therefore constantly changing and the software

needs to be changed to function in the new

environment.

 Increasing unpredictability: The structure of the

program turns out to be progressively troublesome

with steady change in code, therefore, some

expectant advances must be taken to improve and

streamline its structure.

 Large programming development: Software is a

self-sufficient procedure. Programming traits, for

example, size, time, and the quantity of blunders are

practically steady for every framework discharge.

 Organizational dependability: The cost with which

the product is created remains roughly consistent

and is free of the assets given to the product

improvement.

 Preservation of shared trait: During the season of

program, added to it in each release, may be

displayed.

To deal with those complexities of programming framework,

one of the generally utilized systems called software

remodularization which is an imperative segment in the

software maintenance exercises. Software remodularization

is a process to restructure and rebuild the existing software.

Object oriented software modularization divides the software

product into packages that contains several classes. Several

kinds of package

dependencies can be found

in software systems.

An Integrated Method for Improving

Remodularization in Software Systems using

Probability Method

Bright Gee Varghese, Kumudha Raimond, Jeno Lovesum

An Integrated method for Improving Remodularization in Software Systems using Probability Method

2663

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

Intra-edge dependencies and inter-edge dependencies are two

primary kinds ofdependencies. The intra-edges incorporate a

wide range of interior dependencies between classes in a

similar bundle or package, for example, invocation of

function, composition and inheritance. The inter edge

dependencies incorporate outside dependencies among

classes which belong to different bundles. As elucidated of

module dependency graph (MDG) in Fig. 1, the system

consists of 2 modules with 3 cohesion factors such as (A-C,

B-C, E-D) and 3 coupling factors such as (E-B, D-B, C-D). A

large portion of the procedures rely upon the utilization of

cohesion in every package and coupling among the packages

in order to assess the quality of remodularization. The

acceptable arrangements are those that expansion cohesion

and lessen coupling. Cohesion of modules is, all in all,

characterized by the quantity of intra-edges of a module and

coupling as the quantity of between edges among the

modules. Modules by their very natures ought to be

profoundly strong much of the time. In programming dialects

engineers need to import bundles or modules so as to have

perceivability to the classes within them. This gives a

characteristic form and parity that the module arrangement

well. On the off chance that the modules were difficult to

import, clients of those modules would either transform

them, or solicitation that auxiliary variations are prepared.

The objective is to endeavor to improve this organizing to

make the framework simpler to keep up. Despite the reality

that a big number of methodologies are sufficiently

groundbreaking to provide remodularization provisions,

there should be certain open problems in an attack to provide

effective and entirely robotized remodularization.

Module - 1 Module - 2

Fig.1 MDG incorporating two modules with 3 inter-edges

and 3 intra-edges

II. LITERATURE SURVEY

In fact, a few researches tended to clustering issues so as not

to improve existing modularizations, yet to locate the best

deterioration of a framework as far as the modules. The first

search based approach was employed by Mancoridis et al.

[19] to deal with a problem of modularization with single

objective approach. Their concept of distinguishing the

modularization of a software system depends on the

utilization of the heuristic hill-climbing search to augment

cohesion and limit coupling. A similar method has been

additionally utilized in Mitchell and Mancoridis [3], a tool

which bolsters automatic system deterioration. Bunch

performs the decomposition of the subsystem by partitioning

the module dependency graph and relationships of the

module dependence in a given source code. A fitness perform

is employed for assessing the standard of the graph partition

to find a balance between connectivity (i.e., dependence

between two modules of different subsystems) and

interconnectivity (i.e. dependency between modules in the

same subsystem). Harman et al., [12] utilized a genetic

algorithm to enhance the subsystem disintegration of a

product framework. For maximizing the fitness function, a

mix of value measurements, for example, coupling, cohesion,

and multifaceted nature, is defined. So also, Seng et al., [16]

contemplated the re-modularization process as a solitary

target advancement issue utilizing genetic algorithm. The

objective is to build up a strategy for item arranged

frameworks that, beginning from existing subsystem

deterioration, decides de-synthesis with better measurement

esteems and less infringement of structure standards. A

heuristic search-based approach, simulated annealing is

proposed by Abdeen et al., [8] for reducing the dependencies

among the modules or packages in a software system. Their

optimisation technique is predicated on moving classes

between the modules. Abdeen et al. suggested essential

coupling and cohesion metrics arrangements to assess

package arrangement in object-oriented software significant

heritage. Numerous massive software systems which are

object-oriented consisting of many classes that are dealt with

into number of packages. The software modularisation

components of such software systems cannot be

contemplated as classes. Packages, in this case, not just class

containers, yet they likewise assume the job of modules: a

package ought to give well recognized services to the

remainder of the product framework. The evaluation of

package organization is therefore essential for the

maintenance of software. Although many work has been

carried out with the aim of achieving a single class quality

and/or a quality of inter-class relationships, some works

address some aspects of quality and relationship organization

of packages. We believe there is a need for further

investigations to evaluate aspects of package modularity. For

multiple-objective optimization problems, Jaimes et al., [2]

suggested a non-dominated genetic sorting methodology.

Many objectives are the number of objectives i.e., greater

than three. Non-dominated sorting genetic algorithm will

optimize the objectives to the software re-modularization.

The legitimate opinion is that great modularization should

show strong cohesion and low coupling. [14, 16]. Cohesion

and coupling measurements were estimated using various

metrics yet that all will in general depend on linguistic parts

of the source code(with a few exceptions). The proclaimed

favorable circumstances of a modular architecture

incorporates [17]: handle multifaceted nature of a large

software system; plan and create various pieces of same

system by various individuals; partial testing; fix defective

system components with distinct components without

interfacing; control imperfection engendering; or, the re-use

of existing components in various contexts. Certain coupling

measurements were found to be high indicators of

vulnerability (e.g. [1, 10]), and it has been shown that a model

including coupling metrics is a successful maintenance effort

indicator [5]. The rule of high cohesion, low coupling, can be

elucidated in different ways [3]. High cohesion, for instance,

semantically implies that all parts of the module share a same

motivation, named

singularity and the similarity

of purposes [18]. Low

coupling would indicate that

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2664

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

components of separate modules (or to a lower degree) do not

share this reason for current ones. Since computer systems

are not efficient at managing semantics, different

elucidations, simpler to gauge, are normally liked, for

instance based functional dependencies — one part calls an

element of another segment—(for example [14, 15, 20], or on

information get to (for example [10], [8]), orco-changes in a

form control software system (for example [4, 7, 9]). [11]

distinguished and composed in excess of thirty coupling

measurements. We assessed our methodology on seven

programming frameworks. We assessed our methodology on

seven programming frameworks. Our outcomes demonstrate

that our methodology fundamentally beats, in normal,

existing methodologies regarding improving the structure,

decreasing the quantity of coupling among modules and

expanding the quantity of attachment inside the modules.

III. PROBLEM FORMULATION

Obviously the previous works did not take into account the

time convergence factor for re-modularization during the

product maintenance period from the literature study that was

performed. At the point when an extensive programming is

being advanced joining the changes, it expends a substantial

intermingling time amid figuring out. In addition, to

complete the remodularization, it is obligatory to

comprehend the conditions that exist among various

modules. Likewise, the force of coupling among records of

various modules and attachment among the documents inside

every module of the whole framework are to be resolved.

Static code investigation apparatuses can be utilized to

decide the reliance network of the modules and the records

can be gathered dependent on contiguousness and availability

factor. For littler programming frameworks, this can be

accomplished physically or utilizing traditional calculations.

Be that as it may, it is hard to deal with huge and complex

framework along these lines. An ideal methodology is

required to take care of this issue with less time and

computational overhead. In this way, in view of the above

said realities, a methodology has been structured in this work

based on probability and a novel remodularizing approach.

Fig. 2 portrays the mechanism used in the proposed strategy

to remodularize the software system.

Fig. 2 Outline of Proposed Approach in Software

Remodularization

The objective function is to boost the Turbo MQ that Mitchell

suggested and utilized in BUNCH [13]. As characteristics of

well-planned software systems, low coupling and high

cohesion are regarded. On the off chance that is the

quanti

ty of edges within i
th

 module and is the quantity of edges

between modules, iand j, at that point the Turbo MQ can be

resolved as

where is the factor for module i.

(1)

 (2)

The purpose of the Turbo MQ is to improve the satisfactory

design. i.e., restricting the coupling amid the modules and

expanding the module cohesion. The greater the Turbo MQ,

the closer the bundle accomplished is to an efficient program

[13].

IV. PROPOSED APPROACH

The proposed framework is shown in Fig.3. The proposed

approach has two phases. The primary phase establishes

traversal of software system traversal by agents utilizing

connectivity-based probability to observe the arrangement of

files to be visited. In the subsequent phase, files are

restructured using the results and dependency matrix of every

agent to achieve a restructuring framework.

a) Generate MDG

b) Extract Dependency Matrix from MDG

c) Remodularized Software System using PBR

An Integrated method for Improving Remodularization in Software Systems using Probability Method

2665

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

Phase 1

Phase 2

Fig. 3 Architectural diagram of the Proposed Approach

A. Proposed Algorithm

The following steps are provided for the proposed approach.

The order wherein files are to be visited utilizing random

based probability is specified in steps 4 to 10. The procedure

of remodularization utilizing the ordered files and

dependency weightage is specified in steps 11 to 15.

Step 1. Produce MDG by parsing the software system to be

remodularized utilizing source code analysis tool.

Step 2. Create dependency matrix from MDG.

Step 3. Deploy software agents in random locations or files.

Step 4. Follow the steps for an agent to maneuver from

current file to next file.

a. Locate all directly connected files from the present

position of agent.

b. Compute the travel cost (TC) to see each neighbouring file

as follows.

 (3)

where TCij is the actual cost to move from i
th

 file to j
th

 file

 is the weighted dependency from i
th

 file to j
th

 file.

DT is dependent type (DT is 1, if file j calls file i and DT is

0.5, if file i is called by file j

Fig. 4 shows the calculation of travel cost from file, F1 to its

adjacent files.

Fig. 4 Travel Cost from F1 to its adjacent files

a. The probability of moving from i
th

 file to j
th

 file, denoted

by can be calculated as follows.

 (4)

 where j = 1…J…M

Fig. 5 indicates the probability of moving from file, i to its

neighbouring files.

Fig. 5 Probability to move from F1 to

its adjacent files

Step 5. Find cumulative probabilities.

Step 6. Create an arbitrary incentive somewhere in the range

of 0.0 and 1.0.

Step 7. Find the closest lower vary and higher range from

cumulative probabilities to the random value produced

above.

Step 8. Find the lower range index which provides the

subsequent file to visit.

Step 9. Continue from steps 3 to 8 until the agent visits all

files of the software system.

Step 10. Process the outcome of an agent.

Step 11. Access the first file from the agent and mark it as

currentFile.

Step 12. Create and mark a fresh module as the present module

and add currentFile to the present module.

Step 13. Access next file from the agent.

Step 14. If currentFile has dependency with nextFile, then add

nextFile into present module.

a. Change nextFile as currentFile and access next file from

agent

b. Continue from step 14.

Step 15. If currentFile does not have dependency with

nextFile, then

a. If more file is available in ant, then

i. Change nextFile as currentFile and access next file from

agent.

ii. If the currentFile relies on nextFile, generate a fresh

module and label it as the present module.AddcurrentFile and

nextFile to present module. Continue from step 14(a).

iii. If currentFile has no nextFile dependency, attach nextFile

to leftOverList.

b. If more file is available in ant, then change nextFile as

currentFile and access next file from agent. Continue from

step 15.a.ii.

c. If there is no more file to visit in the agent, then

i. By utilizing the dependency matrix, check the reliance of

each file in leftOverList with

the newly created modules.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2666

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

ii. Insert file in the maximum dependence module.

Step 16. Check the cohesion of every module. If any module

has cohesion value less than or equal to one, add the files of

that module into leftOverList and continue from Step 15 c.

Step 17. Calculate the quality of remodularizing outcome

produced by every agent using Turbo MQ value based on the

equations (1) and (2).

Step 18. Rehash from step 3 till no more variety in maximum

Turbo MQ value

V. RESULT AND DISCUSSION

The proposed approach is assessed on different software

systems as shown in Table 1.

Table1. Benchmark data used for experimenting with the

proposed approach

Sl No Software Systems No. of Files

1 compiler 13

2 nos 16

3 boxer 18

4 ispell 24

5 cia 38

6 ApacheAnt 195

7 EclipseJDT 432

Table 2 shows the comparison of results obtained by various

approaches such as Bunch – GA [13], DAGC [22] and EDA

[23]. For the software systems compiler and Boxer, our

approach and the existing approaches give same Turbo MQ.

As the number of files and number of connections increases

in the evaluated software systems, the proposed approach

outperforms the existing approaches shown in Table 2. Fig.6

portrays the improved aftereffects of the proposed

methodology when contrasted with Bunch - GA, DAGC and

EDA.

Table 2. Comparison of results obtained by various approaches such as Bunch - GA, DAGC and EDA with the proposed

approach.

 Bunch-GA DAGC EDA PBR

Software

Systems

No. of

clusters

Turbo

MQ

No. of

clusters

Turbo

MQ

No. of

clusters

Turbo

MQ

No. of

clusters

Turbo

MQ

compiler 4 1.506 4 1.506 4 1.506 4 1.506

boxer 7 3.101 7 3.101 7 3.101 7 3.1

ispell 7 2.177 8 1.997 6 2.19 6 2.21

cia 14 2.706 19 1.833 12 2.787 6 4.1

nos 5 1.636 5 1.606 5 1.636 4 1.665

Fig. 6 Graph representation for software system vs Turbo

MQ

This approach gives better solution in the software systems

ApacheAnt and EclipseJDT with more than 150 files which is

shown in Table 3. For the software systems, ApacheAnt and

EclipseJDT, the proposed approach yields more number of

clusters. The number of clusters is not directly proportional to

Turbo MQ. On the off chance that there is less cohesion with

progressively number of modules, it influences the Turbo

MQ esteem contrarily based on equations (1) and (2). Fig.7

depicts the improved eventual outcomes of the proposed

strategy when compared with Bunch - GA.

1.
50

6

1.
63

6

3.
10

1

2.
17

7
 2.

70
6

1.
50

6

1.
60

6

3.
10

1

1.
99

7

1.
83

3

1.
50

6

1.
63

6

3.
10

1

2.
19

2.
78

7

1.
50

6

1.
66

5

3.
1

2.
21

4.
1

compiler nos boxer ispell cia

13 16 18 24 38

T

u

r

b

o

M

Q

Software Systems with No. of Files

Bunch

DAGC

EDA

PBR

An Integrated method for Improving Remodularization in Software Systems using Probability Method

2667

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

Table 3 Comparison of test results with Bunch - GA by

using software systems with more than 150 files.

Software

Systems

Bunch - GA PBR

No. of

clusters

Turbo

MQ

No. of

clusters

Turbo

MQ

ApacheAnt 8 6.08 24 15.79

EclipseJDT 15 17.4 62 35.85

Fig. 7 Comparison of BUNCH - GA with software of 150

files

For software applications such as ApacheAnt and

EclipseJDT, the amount of Turbo MQ assessments is

checked. The proposed approach is shown to provide better

Turbo MQ with fewer Turbo MQ assessments, which is

shown Fig. 8. It clearly shows that our approach has better

time convergence comparing with Bunch - GA.

Fig. 8 Performance analysis of Turbo MQ value of

proposed approach with software systems, ApacheAnt

and EclipseIDT

VI. CONCLUSION AND FUTURE WORK

Modularizing a product framework profits to sort out the

advancement in an increasingly viable way, coordinate

alterations easily, complete testing and investigating

effectively and productively, and to lead upkeep work

without adversely influencing the working of the product. It

is basic to keep up high attachment and less coupling which

are the fundamental standards of modularization.

Subsequently in this work we have proposed and shown the

execution of programmed remodularization of programming

frameworks utilizing likelihood technique. The proposed

methodology is assessed utilizing different programming

frameworks and the outcomes acquired are turned out to be

increasingly productive when contrasted and the current

methodologies like Bunch - GA, DAGC and EDA. It has

been seen that the proposed methodology is reasonable for

little and extensive programming frameworks and produced

better Turbo MQ values, which is the software package

quality parameter and lesser time complexity with

Bunch-GA. For the future work, semantic connections and

history of programming upkeep will be utilized in figuring of

association quality that can prompt better nature of the

improvement procedure while protecting the first structure up

to greatest.

REFERENCES

1. [1] A. B. Binkley and S. R. Schach, "Validation of the coupling

dependency metric as a predictor of run-time failures and maintenance

measures", in ICSE ’98: Proceedings of the 20th international

conference on Software engineering. Washington, DC, USA: IEEE

Computer Society, 1998, pp. 452–455.

2. [2] A. L. Jaimes, C. A. CoelloCoello, and J. E. U. Barri-entos, "Online

objective reduction to deal with many-objective problems", in

Proceedings of the 5th Inter-national Conference on Evolutionary Multi

criterion Optimization, 2009, pp. 423–437.

3. [3] B. S. Mitchell and S. Mancoridis, "On the automatic modularization

of software systems using the bunch tool", IEEE Transactions on

Software Engineering, 2006, pp. 193–208.

4. [4] D. Beyer and A. Noack, "Clustering software artifacts based on

frequent common changes", in IWPC ’05: Proceedings of the 13th

International Workshop on Program Comprehension, Washington, DC,

USA: IEEE Computer Society, 2005, pp. 259–268.

5. [5] F. B. Abreu and M. Goulao, 'Coupling and cohesion as

modularization drivers: Are we being over-persuaded?' in CSMR ’01:

Proceedings of the Fifth European Conference on Software

Maintenance and Reengineering, Washington, DC, USA: IEEE

Computer Society, 2001, pp. 47–57.

6. [6] G. A. Hall, W. Tao, and J. C. Munson, "Measurement and validation

of module coupling attributes", Software Quality Control, Vol. 13, No.

3, 2005, pp. 281–296.

7. [7] H. Gall, M. Jazayeri, and J. Krajewski, "Cvs release history data for

detecting logical couplings", inIWPSE ’03: Proceedings of the

6thInternational Workshop on Principles of Software

Evolution.IEEEComputer Society, 2003, pp. 13–23.

8. [8] H.Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui, "Automatic

package coupling and cycle minimization", in Proceedings of the 16th

Working conference on Reverse Engineering, IEEE, 2009, pp. 103–112.

9. [9] J. Davey and E. Burd, "Evaluating the suitability of data clustering

for software remodularization", in WCRE ’00: Proceedings of the

Seventh Working Conference on Reverse Engineering (WCRE’00),

Washington, DC, USA: IEEE Computer Society, 2000, p. 268.

10. [10] L. Briand, P. Devanbu, and W. Melo, "An Investigation into

Coupling Measures for C++", in ICSE ’97: Proceedings of the 19th

international conference on Software engineering, New York, NY,

USA: ACM, 1997, pp. 412–421.

11. [11] L. C. Briand, J. W. Daly, and Jürgen Wüst, "A Unified Framework

for Cohesion Measurement in Object-Oriented Systems", Empirical

Software Engineering: An International Journal, Vol. 3 No. 1, 1998,

pp.65–117.

12. [12] M. Harman, R. M. Hierons, and M. Proctor, "A new representation

and crossover operator for search based optimization of software

modularization", in Proceedings of the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann Publishers Inc., 2002, pp.

1351-1358.

13. [13] Brian S. Mitchell and Spiros Mancoridis, "On the evaluation of the

Bunch search-based software modularization algorithm", Soft

Computing, Vol. 12 No. 1, 2008, pp.77–93.

14. [14] N. Anquetil and T. Lethbridge, "Comparative study of clustering

algorithms and abstract representations for software remodularization",

IEEE Proceedings - Software, Vol. 150 No. 3, 2003, pp. 185–201.

15. [15] N. Anquetil and T. Lethbridge, "Experiments with Clustering as a

Software Remodularization

Method", in Proceedings of

Working Conference on

Reverse Engineering

6.08

17.4
15.79

35.85

0

5

10

15

20

25

30

35

40

ApacheAnt EclipseJDT

195 432

Tu
rb

o
M

Q

Software Systems with No. of Files

Bunch

PBR

0

1E+09

2E+09

3E+09

ApacheAnt EclipseJDT

350513
542301

456334591

223964481
4

19500
43200

N
o

. o
f

Tu
rb

o
 M

Q
 E

va
lu

at
io

n
s

Software Systems

Bunch - HC

Bunch-GA

PBR

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2668

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I8027078919/19©BEIESP

DOI:10.35940/ijitee.I8027.078919

(WCRE’99), 1999, pp. 235–255.

16. [16] O. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based

improvement of subsystem decompositions", in Proceedings of the 7th

annual conference on Genetic and evolutionary computation

(GECCO'05), ACM Press, Washington DC, USA, 2005, pp.

1045–1051.

17. [17] P. Bhatia and Y. Singh, "Quantification Criteria for Optimization of

Modules in OO Design", in Proceedings of the International Conference

on Software Engineering Research and Practice & Conference on

Programming Languages and Compilers, SERP 2006, Vol. 2. CSREA

Press, 2006, pp. 972–979.

18. [18] R. Sindhgatta and K. Pooloth, "Identifying software

decompositions by applying transaction clustering on source code", in

COMPSAC ’07 : Proceedings of the 31st Annual International

Computer Software and Applications Conference, Washington, DC,

USA: IEEE Computer Society, 2007, pp. 317–326.

19. [19] S.Mancoridis, B. S. Mitchell, C. Rorres, Y. F. Chen, and E. R.

Gansner, "Using automatic clustering to produce high-level system

organizations of source code", in Proceedings of the International

Workshop on Program Comprehension, 1998, pp. 45–55.

20. [20] W. Li and S. Henry, "Object oriented metrics that predict

maintainability", Journal of System Software, Vol. 23, No. 2, 1993, pp.

111–122.

21. [21] M.M. Lehman, "Programs, life cycles, and laws of software

evolution", Proceedings of the IEEE, Vol. 68, No. 9, 1980, pp. 1060 -

1076.

22. [22] Saeed Parsa, Omid Bushehrian, "A Framework to Investigate and

Evaluate Genetic Clustering Algorithms for Automatic Modularization

of Software Systems", in International Conference on Computational

Science, 2004, pp. 699-702.

23. [23] MahjoubehTajgardan, Habib Izadkhah, Shahriar Lotfi, "Software

Systems Clustering Using Estimation of Distribution Approach" in

Journal of Applied Computer Science Methods, 2016, pp. 99–113.

AUTHORS PROFILE

Mr. Bright Gee Varghese, Assistant Professor

in Department of Computer Science and
Engineering, Karunya Institute of Technology

and Sciences. He completed his Bachelor of
Engineering from ManonmaniumSundarnar

University, Tamil Nadu in 2003. Later, continued

his Master of Engineering in Computer Science
and Engineering and completed it in 2011.

Currently pursuing PhD in Computer Science and

Engineering. His area of research is Software
Engineering. He is passionate in learning cutting

edge technologies and mobile application

development. He has 13 years of experience in
college as well as university level. He has

completed industry recognized certification,

Oracle Certified Professional Java Programmer.
His subject expertise involves C, C++, Java SE,

Java EE and Android.

Dr.KumudhaRaimond is research oriented who

earned her Ph.D. from Indian Institute of

Technology (IIT) Madras, India. Currently she is
working as Professor in the Department of

Computer Science and Engineering, Karunya

Institute of Technology and Sciences,
Coimbatore. Her research focus is on the

development of efficient models using hybrid

intelligent techniques for various applications in
the areas of biometrics, biomedical,

bioinformatics, compression, watermarking, etc.

Her further areas of interest are Big Data

Analytics, Satellite Image Processing,

Watermarking, Wireless Sensor Networks, and

Compression and Image Retrieval. She has a good
number of research publications in peer reviewed

national and international journals, proceedings

of international conferences and book chapters to
her credit. Besides having 20 years of teaching

experience, she also has 3 years of MNC

experience at John F. Welch Technology

Research Centre, a Research wing of General

Electric (GE), Bangalore. She worked as an
Energy System Analyst in the Remote Monitoring

and Diagnostic Lab of GE, was involved in

analysing and predicting the status of remote
machines such as steam turbines and locomotives.

Dr. JenoLovesum is currently working as
Associate Professor in CSE department at

Presidency University,Bangalore. She Completed

her Bachelor of Engineering from
ManonmaniumSundaranar University in the year

2001 and later continued her Master of

Engineering at Annamalai University,
Chidambaram and completed it in the year 2005.

She pursued her Ph.D in at Anna University,

Chennai and completed her Ph.D in the year
2015. . Her research focus is on Cloud Computing

and Software Engineering. In international

meetings and publications, she has published a

number of articles. Teaching has been an

important part of her career and she has teaching

experience of 15 years at college and university
level. Her subject expertise involves software

Engineering and software testing. Currently she is

continuing her research in the area of cloud based
IoT applications.

