
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2258

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919



Abstract- The implementation of load balancing is challenging

task for correct system functioning. Load balancing is the process

of distributing the load among all the available nodes in a proper

way. We present the concept of split point where underloaded node

is not absorb all the load of overloaded node, rather it will be

distributed among several underloaded nodes. In a distributed

system, the directory is maintained at all the information of all the

nodes. Another term defined in this algorithm is threshold.

Threshold limit defines the capacity of each node. Ideally load is

not above the define threshold limit, if overloaded condition arise

then load will be migrated from one node to another. In this paper

we implement the formal specification of split point load

balancing algorithm under Rodin platform on event B. Formal

methods are mathematically based tools for the verification of

software system and hardware system. Event B is formal method

for modeling and mathematical reasoning about the system that

may consist of physical components and software modeling.

Keywords—Load Balancing, Threshold, Event B, Formal

Specification, Formal Methods, Formal Verification

I. INTRODUCTION

Load balancing [1] is one of the important concept in

distributed system. Our system is the collection of nodes

where all the nodes defined by some load. Load balancing

improves the resources utility, maximize the throughput,

minimize response time and minimize the overhead in entire

system [2][3][4][5][6]. Split point is one of the best load

balancing algorithm [2], where load will be transferred to

several underloaded nodes. In this paper we prove the

algorithm using formal methods and verification process.

Defining the system model, if any new request is

processed in node then we increase the load value and

according the load value we define node status under these

categories:

A) Underloaded node

B) Overloaded node

If load of the node is greater than threshold value then we

define the node is overloaded. If load value less than

threshold value then we can say that node is underloaded.

After defining the type of node if load is overloaded then we

transfer the load from overloaded node to underloaded node.

In this structure we maintain a directory of each node with

corresponding load. To overcome the load of overloaded

nodes, we broadcast the message from overloaded nodes to

Revised Manuscript Received on July 05, 2019..

 Shantanu Shukla, Computer Science Depatement, Pranveer Singh

Institute of Technology, Kanpur, India.

Raghuraj Singh Suryavanshi, Computer Science Departement,
Pranveer Singh Institute of Technology, Kanpur, India.

.Divakar Yadav, Computer Science department, Institute of Engineering

and technology, Lucknow, India.

underloaded nodes. After broadcasting the request message,

underloaded nodes deliver the request and reply with load

value and node information. Overloaded nodes receive the

information with corresponding load and save the

information in own directory. After saving the nodes and

corresponding load information, overloaded node search the

suitable node for sending the load. One important point is

there load will not be transferred to that node which has

recently received the load from other node.

 If any overloaded node which is not suitable to transfer

the load because of load value of overloaded node is excess

and none of the underloaded nodes are taking the load in one

node so we shall split the load in overloaded node according

to the information of directory. Means we select the least load

of underloaded nodes and according the underloaded load

value we split the load in overloaded node. In their one

important point is this none of the node' load value greater

than threshold limit.

 After selection of nodes, we define node

movement mechanism. In this mechanism a node is

overloaded due to many reasons. First reason is a node gets

overloaded due to high popularity of more than one of its

node. Second, a node gets overloaded because of high

amount of loads put on it while none of them is highly

popular, In this condition we select a node and transfer the

load from overloaded to under loaded node. During the

transfer of the load, the load value of overloaded node is

decrease and load value of underloaded node is increase

according to corresponding threshold value.

In this paper, we present a formal model of verification

and validation of a distributed load balancing (how can we

balance the load and transfer the load in appropriate node).

According the algorithm we convert the each condition into

set theory which have defined under the eclipse based

RODIN platform to the extension of Event B [7] language.

We define every single module and satisfy the assumption of

proof obligation (PO) methods in the formal based approach.

Rodin tool is generated the proof tree and statistics of context

and machine. It also generate the proof information of every

event and invariants. The Event B formalism is a part of the B

method [7][8]. It is a state based formal approach to promote

the construct of correct paradigm of algorithm and formal

verification by proving the theorem [9].

The remainder of this paper is organized as follows: Section

2 briefly outline about the Event B and Rodin platform,

Section 3 describes system model and informal description

about events, Section 4 presents Event−B Model of Load

balancing for distributed system. Section 5 defines the result

analysis of proposed model

and Section 6 concludes the

paper.

Split Point Load Balancing Algorithm Based on

Event B

Shantanu Shukla, Raghuraj Singh Suryavanshi, Divakar Yadav

Split Point Load Balancing Algorithm Based on Event B

2259

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

II. EVENT B AND RODIN PLATFORM

Event B is a modeling language to provide a transition

methods of any algorithm. Event B has been simplified the

general notation into discrete mathematical expression. A

general notation called event. Every event represents a

different modules under the where clause and according to

where clause, act module is implemented. Additionally, we

read some modeling structure that are important to

understand the concept of Rodin platform and provide the

verification of any algorithm. Event B model [7] [8] [9]

[10][11] is divided into two components - Context and

Machine.

A) Context: Context specify the static part of model. It

contains sets, constant, axioms and theorems. Sets may be

enumerated or carrier sets. The properties of constant and sets

describe under the axioms section. Axiom is set of constant

identifier and these identifier describe the properties under

the axioms section. The context may be seen by the machine

directly or indirectly.

B) Machine: Machine represents the dynamic part of model

which have contained the behavior model. Machine contains

refine, sees, variables, invariants, variants and events. Under

the machine, we create a local variables and define the

operations in event section which start with when and begin

keyword. Under the guard section we write a condition, if all

the guards is true then act module will be implemented. In

guard all the conditions are define according to our model. If

one of the guard is false then act module will not be correctly

implemented.

 Invariant term defines under the machine model,

which is definition of the variable. Variable contain three

modules like variable keyword, invariant and initialization

part. Variables are constrained by invariants and these

invariants are to be safe whereas change the value of

variables. All the module should be clearly define. A machine

can refines by the other machine, but each machine refines

only one machine.

 For making the consistent model, invariants should be

formally prove. Machine sees the context part, if we do not

define the context variables in machine model then we cannot

conclude static part in model. The guard states the essential

condition under an event and action (act) describe on behalf

of the guard when the successfully events occur.

 Event B is a process refinement, state based model.

Refinement is a technique of changing some values of model

using different state model that proofs the correctness of

model. For a correct state of refinement, every possible

execution of refined machines correspond to execution step

of its abstract machine. Verification of a model as well as

correctness of refinement steps should be discharging by

proof obligation. The Rodin platform [8] is support of event

B that provides the environment of automatically generated

proofs and manages an automated proves that is automatic

discharging the goal of the model. The level of automation

should be high to make a realistic model.

 There is some B notation frequently used in our

model. Let P and Q be two sets, then the relational

constructor ↔ defines the set between P and Q.

 P ↔ Q = Power (A*B)

Where * is Cartesian product of P and Q. These relation

written as p ↦ q where p ∈ P and q ∈ Q

Another symbols in B notation as follows:

⇸ Partial function

↔ Relation function

→ Total function

P power set

P1 Non empty power set

dom (R) domain of relation R

ran (R) range of relation R

⊂ Strict subset

⊆ Subset

III. SYSTEM MODEL AND INFORMAL

DESCRIPTION OF EVENTS

In this section, we shall consider an informal approach about

the split point load balancing under distributed environment.

They have a set of nodes where every node maintain a

dictionary. In dictionary they contain the information about

requesting node and their respective load. Request queue also

contain the message of overloaded node with respective load.

In a load balancing system, every node maintains a status of

node. Node status defines in two categories like overloaded

node and under loaded node. Assume one of the node's load is

overloaded then their respective dictionary search the under

loaded nodes. During the searching process overloaded node

broadcast the message and received by the every node except

sending node. The node whose load value is less than

threshold, send reply to sender node. Overloaded node selects

one of the best nodes in underloaded nodes and transfer their

respective load. Each time when a message is send by any

node their respective dictionaries will be updated. During the

load transfer if one receiver is not able to received whole

value of sender load then the load will be divided and

transferred to two or more underloaded node. The main

objective is that load value of receiver should also not exceed

the threshold limit.

 The informal description of events are as follows:

A) Load submission: When a load is submitted to node, its

load value is increased by one. After increasing the load

value, we compare the load value with threshold value. If the

load value is greater than threshold value then we set the node

status is overloaded and if the load value is less than

threshold value then we set the status of node is underloaded.

Overloaded nodes search the underloaded node for achieving

to balance the load in the system.

B) Broadcasting and delivery of a request message: The

overloaded node broadcast the request message to all the

participating nodes. For transferring the load from

overloaded node to underloaded nodes, contain the

information of each node is necessary. The request message

delivers in underloaded nodes from overloaded node.

C) Reply to the requesting node: After receiving request

message, receiver (participant) nodes send the reply message

with the node and load information to the overloaded node.

D) Receiving of reply message to requesting node: The

requesting node receives the reply message from underloaded

nodes (receiver) and makes an entry for each reply message

in dictionary. The requesting node counts the total number of

replied nodes and compare the load value of each nodes.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2260

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

On the basis of different load values in overloaded node, the

node selects the most appropriate node for transferring the

load.

E) Split point sender and decrement the load: Whenever

underloaded node does not capacity to receive whole load of

sender (which is overloaded node), the overloaded node splits

the load and choose two or more underloaded nodes to

transfer the load. Split the load in sender node corresponding

the load value of underloaded node. After splitting the load

value node can transfer the load in various underloaded nodes

and decrease the value from overloaded node.

F) Split point receiver and increment the load: After

receiving the load from overloaded node, value of nodes

increase the load in underloaded nodes. After all the

overloaded node turn into normal node, load transfer is

complete.

 We have read many algorithms which are

implemented under the Event B model for verification and

provide the proof obligation [11][12][13][14][15].

IV. EVENT B MODEL OF LOAD BALANCING IN

DISTRIBUTED SYSYTEM

Event B model contains a context and a machine. Machine

contains various invariants and events. In context we declare

the sets of MESSAGE & NODE as carrier set. The other term

is set status, capacity, and type, which are define as

enumerated set. In the set status we have declared the two

type of load like under load & overload. The set status define

the status of node. The set type contain a constant like

value_under load, value_overload, threshold, val_threshold,

request, reply, inprogress and completed. The message type

defines the type of message whenever it is request or reply.

Invariant defined as “sender" variable is a partial function

from MESSAGE to NODE. A mapping (mm→nn) ∈ sender

indicates that message mm is send by node nn. Define

another variable is loadmessage. Loadmessage manages a

load by natural number (N). Invariant defines by

(loadmessage ∈MESSAGE → N) means message contain the

load which have natural number. The variable reqnodes is

subset of NODE set and it contains only those nodes which

are overloaded.

 The variables, initialization and invariants terms

of machine are defines as follows:

Variables: sender, loadmessage, deliver, nodestatus,

loadvalue, replymsgsend, replymsgrcd, msgsend, dir,

messagenodevalue, messagetype, replynode, trans,

transferload

Initialization: We declare all the initial values according to

the modeling. Most of them declare with ∅ value. But some

values can't be ∅. The initial value of node status is under

loaded and initial value of load value is 0 which is a natural

number.

 Fig 2: Invariants of load balancing model

Fig 1: Invariants of load balancing algorithm

 All those invariants (see figure 1) described below:

a) The variable sender send the message from one node to

another (inv1). The invariant inv(2) is defined as follows :

deliver ∈ NODE↔MESSAGE

The variable deliver represents delivery of message at a node.

A mapping of form (nn ↦mm) ∈ deliver represents that a

node nn has delivered the message mm to participating nodes.

 b) The variable nodestatus defines the status of node, either

load is overloaded or underloaded. (Inv3)

c) The invariant inv(4) represents the variable of loadvalue. It

defines the value of load in a node. Load value represent by a

natural number.

d) The Invariant inv (5) represents replymsgsend as follows:

replymsgsend ∈ (MESSAGE↔MESSAGE)⇸NODE

The invariant of replymsgsend defines the sending of

message from participant node (underloaded node) to

corresponding node (overloaded node).

 A mapping of form {({mm↦m})↦n} ∈ replymsgsend

represents that an underloaded node n send the reply message

m for corresponding request message mm.

e) The variable replymsgrcd represents the receiving of

message from participating nodes (receiver) to corresponding

node (sender). (Inv 6)

replymsgrcd ∈ NODE↔ (MESSAGE↔MESSAGE)

A mapping of the form is as follows:

{nn ↦ ({mm ↦ m})} ∈ replymsgrcd

INVARIANTS

inv1 : sender∈ MESSAGE⇸NODE

inv2 : deliver∈ NODE↔MESSAGE

inv3 : nodestatus ∈ NODE → status

inv4 : loadvalue ∈ NODE→ℕ

inv5 : replymsgsend ∈ (MESSAGE

 ↔MESSAGE)⇸NODE

inv6 : replymsgrcd ∈ NODE↔

 (MESSAGE↔MESSAGE)
inv7 : msgsend ⊆ MESSAGE

inv8 : dir ∈ NODE↔(MESSAGE⇸ℕ)

inv9 : messagetype ∈ msgsend→type

inv10 : messagenodevalue ∈

 MESSAGE↔ℕ

inv11 : replynode ∈ NODE↔

 (MESSAGE⇸ℕ)

inv12 : trans ⊆ NODE

inv13 : transferload ∈ trans →loadtransfer

inv14: loadmessage ∈ (MESSAGE⇸ℕ)

Split Point Load Balancing Algorithm Based on Event B

2261

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

An overloaded node nn has received the reply message m

from corresponding request message mm.

f) The invariant Inv (7) msgsend specifies set of send and

receive messages.

g) The variable dir represents the directory structure. It store

the information of load value of node. Directory exchange the

load information between the overloaded node and

underloaded node. (Inv 8)

h) The variable messagetype specify the type of message.

Message type is either request or reply. (Inv 9)

i) The variable messagenodevalue carry the information of

load value of node. (Inv 10)

j) The variable replynode represent only those nodes which

have accept the load from the underloaded nodes and reply to

overloaded node. (Inv 11)

k) The invariant (inv 12) represents the trans variable, which

is belong to NODE set. The invariant (inv 13) of transferload

represent under the axioms in context section. The transfer

load is either completed or inprogress.

l) The variable loadmessage represent only these messages

which are reply to overloaded nodes. (Inv 14)

4.1 Events

In last section we define variable and invariants of load

balancing machine. Now we discuss the events in load

balancing process. Events are also called the operation or

transitions. Event has no parameter, user is define as own

event according to machine requirement. There is no access

to state variable. At most one event is seen by system at a

time. Different guard in each event makes different operation

perform by machine and generate a proof obligation. Any

invariant I (v) where v is variable, which is initialized with

initial condition and which is safe by events or transitions in

the list of events.

 There are some events in load balancing process to

provide the correctness and efficiency our model.

A) Increase the load value: If any fresh node is processed

in the system then we have increased the load value by one.

(See figure 2)

Fig 2: Event of Load value increase

The guard grd1 ensures that node nn is node and guard grd2

defines its loadvalue ld of the node nn. If the guard is true

then action act 1 increases the value by one.

B) Identify the under loaded node: To identification of the

node as under loaded, we compare the value of threshold. If

the load value of node is less than threshold then we define

the status of node is under loaded. (See figure 3)

Fig 3: Event of under loaded node

System compare the load value of node nn with the value of

threshold in guard grd2. If the guard is true then the action is

perform and status of node is set to the undeloaded (act1).

B) Identify the overloaded node: The event of overload

node shows in figure 4. To identify the node status whether it

is underloaded or overloaded, we compare the value of

threshold. If the value of threshold is greater than load of the

node, then the node is overloaded.

Fig 4: Event of overloaded node

Event of overloaded node defines the load value of node nn is

greater than or equal to threshold value in guard grd2. Load

value of node nn is natural number (grd 3). We set the status

of node nn is overloaded in action act1.

C) Broadcast the message: After identify the status of

nodes if any node is overloaded then we broadcast the request

and send the message to every participating nodes. All the

participating nodes receive the request message. Figure 5

defines the event of broadcast.

loadvalueincrease ≙

ANY nn, ld

WHERE

grd1 : nn ∈ NODE

grd2 : ld=loadvalue(nn)

grd3 : ld∈ N

THEN

act1 : loadvalue(nn)≔loadvalue(nn)+1

END

overload ≙

ANY nn

WHERE

grd1 : nn ∈NODE

grd2 : loadvalue(nn) ≥ value_threshold

grd3: loadvalue(nn) ∈ ℕ

THEN

act1 : nodestatus(nn) ≔ overloaded

END

underload ≙

ANY nn

WHERE

 grd1 : nn∈NODE

 grd2 : loadvalue(nn)<value_threshold

THEN

act1 : nodestatus(nn) ≔ underloaded

END

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2262

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

Fig 5: Broadcast of message

In broadcast event we define the variable nn and mm where

nn is belong to node and mm is belong to sending message

(grd 1, 2). We set the status of node is overloaded (grd 4). We

send the newly message that not occurring in domain of

sender list (grd 3) in receiving node. We perform the action

clause where message mm is broadcast to all the system send

by node nn updated in action act1. Message mm is reflect in

msgsend list represent in action act 2. Type of message mm is

request (act3).

E) Delivery of request message: When the overloaded

node send a request to underloaded node then all nodes

receive the request. Message must be fresh in the receiving

node. Delivery event is shown in figure 6.

Fig 6: Event B model of request delivery

In request deliver event model, the delivery of request

message at participating node. The guard grd5 ensures that

message mm is send by node nn and message is in the sender

list. The guard grd7 defines, delivery of message mm in node

n does not exist. We deliver the message mm in node n

successfully in action act1.

Fig 7: Reply of request message

F) Reply of request message: After receiving the delivery

message by participating nodes, underloaded nodes send a

reply message to coordinator node (overloaded node).

Coordinator node receive a reply message from underloaded

nodes and update the directory with nodes and respective

load information. (See figure 7)

 In replymsgsend event shows that

message mm is in the domain of sender list in guard grd 4 and

type of message is request define in guard grd7. Message m is

a fresh message and not deliver yet (grd 9 and 10). Message

m is not in domain of sender (grd11). Reply message does not

send in domain of sender (grd 12) and directory of node n

does not update with load value ld by sending message m

(grd 14). Nodes send the reply message, the load value of

nodes are less than threshold limit (grd15). If all the guard is

true, then we perform the action, the new message m is in

message send list (act1). Type of the message m is reply

message (act 2). The sender node is updated with reply

message m (act 3). Reply message is contain the new

message m which was send by node n correspond to request

message mm in action act4. We snatch the load value of node

n from the message m shown in action act 5.

G) Delivery of reply message at coordinator node: After

sending the reply message from participating nodes,

coordinator node (overloaded node) receive the reply

message. (See figure 8)

deliver request ≙

ANY nn, mm, n, ld

WHERE

grd1 : nn∈NODE

grd2 : mm∈MESSAGE

grd3 : mm∈ dom(messagetype)

grd4 : messagetype(mm)=request

grd5 : (mm↦nn)∈sender

grd6 : n∈NODE

grd7 : (n↦mm)∉deliver

grd8 : ld=loadvalue(nn)

THEN

act1 : deliver≔ deliver∪{n↦mm}

END

broadcast ≙

ANY nn, mm

WHERE

 grd1 : nn∈NODE

 grd2 : mm∈MESSAGE

 grd3 : mm∉ dom(sender)

 grd4 : nodestatus(nn)=overloaded

THEN

 act1 : sender≔sender∪{mm↦nn}

 act2 : msgsend≔msgsend∪{mm}

 act3 : messagetype(mm)≔request

END

replymsgsend ≙

ANY n, mm, m, ld, nn

WHERE

grd1 : n∈ NODE

grd2 : mm∈ MESSAGE

grd3 : mm∈ msgsend

grd4 : mm∈dom(sender)

grd5 : (n↦ mm)∈deliver

grd6 : ld=loadvalue(n)

grd7 : messagetype(mm)=request

grd8 : (mm↦ nn)∈sender

grd9 : m∈ MESSAGE

grd10 : m∉ msgsend

grd11 : m∉ dom(sender)

grd12 : {mm↦m}∉ dom(replymsgsend)

grd13 : nn∈ NODE

grd14 : {m↦ld}∉dir[{nn}]

grd15 : loadvalue(n)≤ value_threshold

THEN

act1 : msgsend≔ msgsend∪{m}

act2 : messagetype(m)≔reply

act3 : sender≔ sender∪{m↦n}

act4 :

 replymsgsend≔ replymsgsend∪
 {({mm↦m})↦n}

act5 : messagenodevalue(m)≔loadvalue(n)

END

Split Point Load Balancing Algorithm Based on Event B

2263

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

Fig 8: Delivery of reply message

In guard grd 4 shown that message type of mm is request and

type of message m is reply message in guard grd 4 and 8

respectively. The guard grd 5 shows request message mm

successfully deliver in node nn and grd 10 ensures that

message m is in sender list of node n. The guard grd 11 shows

that reply message send in coordinator node. After that node

nn is not received the reply message in guard grd 14. Node n

which are send the message m with load (ld) is not shown in

directory of node nn in guard grd 16. Message m is send by

node n is not deliver in node nn shown in guard grd 15.

 The action act1 represents the message m is

successfully delivered in node nn. Action act 2 shows that

reply message received by node nn that is send by message m

to corresponding request message mm. Action act 3 ensures

that load value of receiver node n is successfully shows in

directory of sender node nn. Action act 4 ensures that load

value ld of message m send by reply node n.

H) Split load and decrease the load value: After

successfully receiving of reply message of node nn, system

chooses the overloaded node to transfer the load. We

compare the value of node with threshold value. If the load

value is less than threshold then select the node and transfer

the load into it. Any overloaded node search the directory to

send the load in under loaded nodes and node can't migrate

the load due to unavailability of sufficient load in

underloaded nodes. We split the load in overloaded node and

transfer the load in two or more underloaded nodes.

(See fig 9)

Fig 9: Split point at sender node and decrease the load

Guard grd 2 & 5 ensures that node status of node n is

underloaded and node nn is overloaded. Loadvalue of n & nn

is natural number ensures in guard grd 3 & 6. Variable ld

belong to load and define by the natural number shows in

guard grd 9. Message m is deliver at node nn ensure guard

grd 10. Load value of node n continues with message m and

update the directory of node nn in guard grd11. Reply

message receives by node nn ensures at the guard grd 12.

Guard grd 13 & 14 describe the load value of node nn is

greater than threshold while loadvalue of n is less than

threshold. Load ll is variable, belong to natural number

ensures in guard grd 15. Reply nodes are those nodes whose

value is less than threshold in node n ensure in guard grd 16

and load ll belong to split load whose value is greater than

load value of node nn ensure in guard grd 17. Guard grd 18

ensures that adding the loadvalue of n and load ll does not

exceed the threshold value. Guard grd 19 & 20 ensures that

node nn belong to the domain of transfer load and progress of

node is not complete.

 Action act1 ensures that transferload is

inprogress. Loadvalue of sender node nn is subtract the load ll

and decrease the loadvalue of overloaded node shows in

action act 2.

I) Split point at receiver: After Sending the split load from

sender (overloaded) node to receiver node (underloaded

node), we decrease the load in overloaded node and increase

the load in underloaded node. Formal description is describe

below:

replymsgrcd ≙

ANY nn, mm, m, n, ld

WHERE

grd1 : nn∈ NODE

grd2 : mm∈ MESSAGE

grd3 : mm∈ msgsend

grd4 : messagetype(mm)=request

grd5 : (mm ↦nn)∈sender

grd6 : m∈ MESSAGE

grd7 : m∈ msgsend

grd8 : messagetype(m)=reply

grd9 : n∈ NODE

grd10 : (m ↦n)∈sender

grd11 : ({mm ↦m}) ↦n∈ replymsgsend

grd12 : ld=loadvalue(n)

grd13 : {m ↦ld}∉dir[{nn}]

grd14 : (nn ↦ ({mm ↦m}))∉replymsgrcd

grd15 : (nn ↦m)∉deliver

grd16 : {m ↦ld}∉replynode[{n}]

THEN

act1 : deliver:= deliver ∪{nn ↦m}

act2 : replymsgrcd:=

replymsgrcd ∪{nn ↦ ({mm ↦ m})}

act 3 : dir:= dir ∪{nn ↦{m ↦ld}}

act4 : replynode:= replynode ∪{n ↦{m ↦ld}}

END

splitpoint at sender ≙

ANY nn, n, ld, m, mm, ll

WHERE

 grd1 : n∈NODE

grd2 : nodestatus(n)=underloaded

grd3 : loadvalue(n)∈ℕ

grd4 : nn∈NODE

grd5 : nodestatus(nn)=overloaded

grd6 : loadvalue(nn) ∈ℕ
grd7 : m∈ MESSAGE

grd8 : mm∈MESSAGE

grd9 : ld∈ ℕ

grd10 : (nn↦ m)∈deliver

grd11 : (nn↦{m↦ld})∈dir

grd12 : nn↦({mm↦m})∈replymsgrcd

grd13 : loadvalue(nn) > value_threshold

grd14 : loadvalue(n) ≤ value_threshold

grd15 : ll∈ℕ

grd16 : (n↦{m↦ld})∈ replynode

grd17 : ll<loadvalue(nn)

grd18 : loadvalue(n)+ll < value_threshold

grd19 : nn∈dom(transferload)

grd 20 : transferload(nn)≠inprogress

THEN

act1 : transferload(nn) ≔inprogress

act2 : loadvalue(nn)≔loadvalue(nn)−ll

END

ll∈ℕ

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8 Issue-9, July 2019

2264

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

Fig 10: Split point at receiver node

In figure 10 guard grd 5 ensures that load value of n is less

than threshold value. Guard grd 6 shows that load value of nn

is always greater than load value of node n. Load ll belongs to

natural number (grd 7). We extract the load from overloaded

node in guard grd 8. Guard grd 11 ensures that transferload is

inprogress and loadvalue of node n is less than value of

threshold ensure by guard grd 12. To perform the action we

add the load in various underloaded nodes shown in action

act1 and load transfer of node nn is completed in action act2.

V. RESULT ANALYSIS OF PROPOSED MODEL

In distributed load balancing we have balanced the load from

overloaded nodes to under loaded nodes. All the activities in

the system is verified and validated with Event B model.

Event B is mathematical model which contain the set and

logic operations. We convert all the load balancing steps into

events and invariants for generating a proof obligation

methods. Proof obligation methods are manually or

automatically discharged. Rodin tool generates a total 80

proof obligations and all of them are discharge automatically.

Here is a statistics of the proof table:

Element

name

Total

P.O.

Automatic

P.O.

Manual

P.O.
Reviewed Undischarged

Load

context
0 0 0 0 0

Load

balance
Machine

80 80 0 0 0

VI. CONCLUSION

To balance the load in each node is main objective of this

paper and it is ensure by the formal verification. In this paper,

we focus on split point load balancing technique. We have

developed the model of load balancing through send and

receive of messages in global environment and formalization

of the model in B language on RODIN platform. In the

refinement, we shows how to transfer the load from sender to

receiver. Load balancing is a key role in distributed network,

without it we cannot imagine to implement the system. Our

model implements correctly and all the events and invariants

are successfully discharge. We proof the correctness of a

model using Event B. In this model, there is not any invariant

violation to implement the model and all those properties

must be maintained.

 ACKNOWLEDGEMENT

This work is done under the DLSR project (Distributed load

balancing and system recovery) governed by Uttar Pradesh

Council of Science and Technology (UPCST) and supported

by PSIT College Kanpur.

 REFERENCES

1. Mukesh Singhal and Nirjan G. Shivratri " Advanced concept in

operating System- Distributed, Database and multiprocessor operating

system " Tata Mcgraw Hill 2001
2. Narjes Soltani and Mohsen Sharifi : "A load balancing algorithm based

on replication and Movement of Data items for dynamic structured P2P

system" International Journal of Peer to Peer Networks (IJP2P) Vol.5,
No.3, August 2014

3. Neeraj Rathore & Inderveer Chana “Load balancing and job Migration
Techniques in Grid-A Survey of Recent Trends" In wireless Personal

communication ISSN 0929-6212

4. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, "Load
Balancing in Structured P2P Systems," in Second Int’l Workshop

Peer-to-Peer Systems (IPTPS ’02), USA, pp. 68-79, 2003

5. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan " Chord: A Scalable Peer to peer Lookup Service for Internet"

MIT Laboratory for Computer Science

6. Jea-cheol Ryou Johnny ,S. K. Wong, " A Task Migration Algorithm for
Load Balancing in a Distributed System" Computer Science Department

Iowa State University Ames, Iowa 50011

7. J R Abrial. The B Book : Assigning Programs to Meaning, Cambridge
University Press,1996.

8. J R Abrial. Extending B without changing it. (For Distributed

System).Proc. of 1st Conf. on B Method, pp 169-191, 1996.
9. Butler M. and Walden, M.: Distributed System Development in B. In:

Proc. of Ist Conf. in B Method, Nantes, pp. 155-168, (1996).

10. M.Butler " Concise summary of Event B mathematical toolkit"
11. Divakar Yadav and Michael Butler "Rigorous Design of Fault - Tolerant

Transactions for Replicated Database Systems Using Event B"

School of Electronics and Computer Science ,University of Southampton
12. Arun Kumar Singh1 and Divakar Yadav" Formal Specification and

Verification of total order broadcast through destination agreement using

event B" International Journal of Computer Science & Information

Technology (IJCSIT) Vol 7, No 5, October 2015

13. Raghuraj Suryavanshi1 and Divakar Yadav " Modeling Of Distributed

Mutual Exclusion System using Event B"
14. Girish Chandra1, Raghuraj Suryavanshi2 and Divakar Yadav" Formal

Verification Of Distributed Checkpoint Using Event-B

15. Alexei Iliasov1, Linas Laibinis2, Elena Troubitsyna2, and Alexander
Romanovsky " Formal Derivation of a Distributed System"

AUTHORS

Shantanu Shukla is a research assistant

in Department of Computer Science and

Engineering at PSIT college, Kanpur.

He has received M.Tech degree from

AKTU University, Lucknow. He has

presented several research paper in

international journal. His current

research area is in distributed system and formal methods.

split point at receiver ≙

ANY n, ll, nn, mm

WHERE

grd1 : n∈NODE

grd2 : nn∈NODE

grd3 : loadvalue(nn)∈ℕ

grd4 : loadvalue(n)∈ℕ

grd5 : loadvalue(n)<value_threshold

grd6 : loadvalue(nn)>loadvalue(n)

grd7 : ll∈ℕ

grd8 : loadvalue(nn)=loadvalue(nn)−ll

grd9 : mm∈MESSAGE

grd10 : nn∈dom(transferload)

grd11 : transferload(nn)=inprogress

grd12 : loadvalue(n) ≤ value_threshold

THEN

 act1 : loadvalue(n)≔loadvalue(n)+ll

 act2 : transferload(nn)≔completed

END

Split Point Load Balancing Algorithm Based on Event B

2265

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number:I8420078919/19©BEIESP

DOI:10.35940/ijitee.I8420.078919

Raghuraj Suryavanshi is working as

Associate Professor in Department of

Computer Science and Engineering at

Pranveer Singh Institute of Engineering

& Technology Kanpur. He has

completed Ph.D. from Uttar Pradesh

Technical University, Lucknow. He has

received Teacher Fellowship award from Uttar Pradesh

Technical University. His research interests are formal

verification and validation of critical properties of distributed

database systems.

Divakar Yadav is professor in Computer

Science and Engineering Department at

Institute of Engineering and Technology,

Lucknow. He holds a Ph. D. Degree in

Computer science from University of

Southampton, UK. His research interests

include distributed computing, databases

and formal methods.

