M^X/G/1 Vacation Queueing System with Two Types of Repair facilities and Server Timeout

V.N.Rama Devi, Y.Saritha, K.Chandan

Abstract: We consider a single server vacation queue with two types of repair facilities and server timeout. Here customers are in compound Poisson arrivals with general service time and the lifetime of the server follows an exponential distribution. The server finds if the system is empty, then he will wait until the time ‘c’. At this time if no one customer arrives into the system, then the server takes vacation otherwise the server commences the service to the arrived customers exhaustively. If the system had broken down immediately, it is sent for repair. Here server failure can be rectified in two case types of repair facilities, case1, as failure happens during customer being served will stays in service facility with a probability of 1-q to complete the remaining service and in case2 it opts for new service also who joins in the head of the queue with probability q. Obtained an expression for the expected system length for different batch size distribution and also numerical results are shown.

Keywords: Expected system length, Server timeout, Two types of repair facilities and. Vacation queue.

I. INTRODUCTION

The concept of Server timeout plays a vital role in a single service system with vacations. Number of problems is modeled by a vacation with queueing system. Queueing theory is used in Inventory control, loading and unloading of ships, machine interference problems, machine service and repair model. Vacation queue means the server completely sits idle and were first discussed by Levy and Yechiali [6] introduced and did the utilization of idle time in an M/G/1 queueing system followed by several excellent surveys by B.T. Doshi [1], Later on Jau-chaunuk, Chian-Hangwu and Zhe George Zhang [3] did on multiple vacation models in queueing theoryand so on. When there is no customers in the system it becomes empty, the server will wait until time ‘c’ known as server timeout. Oliver C.Ibe [7], [8] derived an expression to the expected waiting time of a vacation queue in which server couldn’t take frequently second vacation upon returning from a first vacation and if he finds system with zero customer or wait indefinitely for a customer to arrive and it also extended for N-policy. E.Ramesh Kumar and Y. Praby Loit [2] obtainedand derived an expression for the mean waiting time from the length of the system with single and n-policy of vacation queueing system. Y.Saritha, K.Satish KumarandK.Chandan [12] derived the expected system length using different bulk size distributions for M/^X/G/1 vacation Queueing system with server timeout. Single Queue subjected to breakdown and repair has been studied by number of statistician. S. Bama M.I.Aftab Begum and P. Fijy Jose[10] analyzed and derived M/^X/G/1 queue in which random breakdowns occur with the Poisson process.

II. MODEL DESCRIPTION

Here customers are assumed to arrivein batches under compound Poisson process with rate b, let B(Z) be the batch size distribution. The service times of a single server follow general distribution function. The server find if the system is empty, then he will wait until the time ‘c’ is known as server timeout. At this time if no one customer arrives into the system, then the server takes vacation otherwise the server commence the service to the arrived customer. At the expiration of the vacation time if no customer arrive the server goes for another vacation, otherwise hecommence the service to the arrived customer exhaustively: Service may be interrupted due to Server breakdowns. Here the server is unable to work unless the machine gets repaired, therefore the server should undergo for repair process. Here breakdown server is facilitated with two case types of repair facilities, case1, as failure happens during customer being served will stays in service facility with a probability of 1-q to complete the remaining service and in case2 it opts for new service also who joins in the head of the queue with probability q. When the repair work is completed the server immediately returns to service system and executes the service for the waiting customer as well as arrived customer in a queue.

III. ANALYSING THE MODEL

The customer arrives to the system and occurs according to a compound Poisson process with arrival rate 'b’, and service times are exponential with mean rate μ.

Retrieved Number: 1873807891919%BEIESP
DOI:10.35940/ijitee.18738.078919
Published By: Blue Eyes Intelligence Engineering & Sciences Publication

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075, Volume-8 Issue-9, July 2019
The time, X, is to serve a customer and has a general distribution with cumulative distribution function CDF $F_X(x)$, with mean $E(X)$ and its second moment $E(X^2)$. The Laplace stieltjes transform function of X is $B_X(s)$, which is defined by

$$B_X(s) = E(e^{-sX}) = \int_0^\infty e^{-sx} f(x) dx$$

(1)

The duration of a vacation is symbolized as V and have to follow general distribution with CDF $F_V(v)$ and Laplace stieltjes transform function of V is $B_V(s)$. The average of V is $E(V)$ and its second moment $E(V^2)$.

$$B_V(s) = \frac{V}{S + \gamma}$$

(2)

Here X and V are mutually independent. Similarly if the system has breakdown with rate α, then system go for two types of repair facilities based on customer's choice. After repair, the server start the service to the customer. Let $G_{L(M/G/1)}(z)$ is PGF the number in system is given by [Ref 10]

$$g_{L(M/G/1)}(z) = \frac{(1-p)h_0 k_1 z^2 + p(1)}{h_0 k_1 (z^2 - 2) - 2aph_0 k_1 (z^2 - 2)}$$

(3)

Where $k_1 = \lambda - \lambda x(z)$ and $k_2 = \alpha + \lambda - \lambda x(z)$

Let A indicates number of customers in the system at the beginner of busy period. The PMF of A is $P_A(a) = \{A=a\}$, whose z-transformation is $G_A(z)$ is given by

$$g_A(z) = E(Z^a) = \sum_{a=1}^\infty Z^a P_A(a)$$

(4)

The mean of A is $E(A)$ and its second moment is $E(A^2)$. Let the random variable B denotes the number of customers left the system by an arbitrary departing customer. The PMF of B is $P_B(b)$, whose z-transform is given by $G_B(z)$.

$$g_B(z) = \frac{1 - \alpha a z}{(1 - z) E(A)}$$

(5) Its means $E(B)$ and its second moment is $E(B^2)$.

Assume that L be the number of customers in the system. The Z-transform of the pmf of L i.e.; $P_L(l)$ is given by $g_L(z)$

$$g(L) = g_B(z) + g_{L(M/G/1)}(z)$$

(6)

Its mean is $E(L)$ and its second moment is $E(L^2)$.

Special Batch Size Distributions:
As the batch size b is a random variable, it has a probability distribution. In particular Deterministic, Geometric and Positive Poisson are considered.

1.) If we take Deterministic, then the generating function is $B(z) = z^b$

$$E(W_q) = \frac{1}{E(A)} - E(X)$$

(10)

2.) If we take Positive Poisson, then the generating function becomes

$$B(z) = \frac{ne^{-a(z-1)}}{a}$$

where $n = \frac{\alpha}{1-e^{-a}}$

(8)

3.) If we take Geometric, then the generating function becomes

$$B(z) = p[z^{-1} - (1 - p)]^{-1}$$

(9)This gives mean $E(W_q) = E(L)$ and second moment $E(L^2)$

$$E(L) = \frac{2(1-p)}{p^2}$$

where $\frac{1}{p}$ is the average batch size.

Let W_q denotes the waiting time in the system, to determine expected system length. Thus applying little’s law we obtain the expected system length of the customer is [Ref 12]

$$E(L) = \frac{1}{E(A)} - E(X)$$

(10(a))

By using $g_A(z)$, we can derive $E(L)$. To get the Expressions for $g_A(z)$ the Laplace –Stieltjes transform of Expected system length. [Ref 12]

$$g_A(z) = ZP_2 + \frac{M_\gamma(\lambda - \gamma, Z) - M_\gamma(\lambda)}{1 - M_\gamma(\lambda)}P_3$$

(11)

Where $P_2 = \frac{M_\gamma(\lambda)}{1-e^{-\lambda \gamma}}$ and $P_3 = \frac{1-M_\gamma(\lambda)}{1-e^{-\lambda \gamma}}$.

From these, we get
\[g'_\ell(1) = E(A) = P_2 + \frac{AD'(1)E(V)}{1-M_V(\lambda)} P_3 \]
\[= \frac{M_V(\lambda)(1-e^{-\lambda}) + \lambda D'(1)E(V)}{1-e^{-\lambda}M_V(\lambda)} \] (12)

and
\[g'_\ell(1) = E(A^2) = \frac{AD'(1)E(V) + \lambda^2 D'(1)^2 E(V^2)}{1-M_V(\lambda)} P_3 \]
\[= \frac{AD'(1)E(V) + \lambda^2 D'(1)^2 E(V^2)}{1-e^{-\lambda}M_V(\lambda)} \] (13)

By assuming the equation (2), we can define equation (12) and (13) by using \(B_V(S) = \frac{r}{s+y} \) and \(B_V(\lambda) = \frac{r}{s+y} \) and obtain the following equations as below
\[E(A^2) = \frac{2\lambda^2((s+y)-e^{-\lambda+y})y^2}{((s+y)-e^{-\lambda+y})y^2} \] (14)

By substituting equation (3), (5) in equation (6), we get
\[g(Z) = 1 - gA \frac{(1-\rho)k_1S'_k(1-S'_k) - zaqR^k(1-1)}{a_1k_1(z-S'_k)-zaqR^k(1-S'_k)} \] (15)

Consider
\[k = \frac{1-e}{E(A)} \] (19) By differentiating the above equation (18) w.r.t z, we get
\[g'_Z(z) = \frac{zaqR^k(1-S'_k) - ha_k(1-S'_k)}{zaqR^k(1-S'_k) - ha_k(1-S'_k)} \] (17)

Now substituting K, K1, K2=1 also equation (14) and (15) in equation (20), we get
\[g(Z) = \frac{1-qaR^k(1-S'_k) - ha_k(1-S'_k)}{zaqR^k(1-S'_k) - ha_k(1-S'_k)} \] (18)

Again substituting K, K1, K2 z=1 also equation (14) and (15) in equation (22), we get
\[g'_Z(1) = \frac{1}{a_qR^k} \frac{ha_1S'_kE\Lambda}{a_qR^k} \] (20)

Again differentiating the above equation (20) w.r.t z, we get
\[g'_Z(z) = \frac{zaqR^k(1-S'_k) - ha_k(1-S'_k)}{zaqR^k(1-S'_k) - ha_k(1-S'_k)} \]
\[+ 2g'_Z(z) \frac{zaqR^k(1-S'_k) - ha_k(1-S'_k)}{zaqR^k(1-S'_k) - ha_k(1-S'_k)} \]
\[+ g'_Z(1) \]
\[= K \times ((-g'(Z)) \frac{ha_1S'_k}{a_qR^k} \]
\[+ (-g'(Z)) \frac{ha_1S'_k}{a_qR^k} \]

Thus by above expression, we obtain expected system length.

Particular case Here in equation (23) the resulting expression is the special case for the M/G/1 model.

IV. NUMERICAL RESULTS

Thus by using equation (23) and varying different parameters, we get some numerical illustration in Table 1 is given below:

Table 1: Effect of Different Variables (b, λ, μ, c, α, and γ) on expected system length for fixed values of b=2, λ=2, μ=50, c=1, α=0.2 and γ=0.25.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Deterministic distribution of E(L)</th>
<th>Positive Poisson distribution of E(L)</th>
<th>Geometric distribution of E(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varying batch size b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.551</td>
<td>9.86</td>
<td>10.05</td>
</tr>
<tr>
<td>3</td>
<td>11.701</td>
<td>10.85</td>
<td>12.767</td>
</tr>
<tr>
<td>4</td>
<td>16.267</td>
<td>11.29</td>
<td>17.208</td>
</tr>
<tr>
<td>5</td>
<td>21.466</td>
<td>11.844</td>
<td>22.48156</td>
</tr>
<tr>
<td>6</td>
<td>27.542</td>
<td>24.85</td>
<td>8.7996</td>
</tr>
<tr>
<td>Varying arrival rate λ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8.5515</td>
<td>9.8621</td>
<td>10.05123</td>
</tr>
<tr>
<td>3</td>
<td>8.5980</td>
<td>10.793</td>
<td>10.32997</td>
</tr>
<tr>
<td>4</td>
<td>10.441</td>
<td>11.749</td>
<td>15.24963</td>
</tr>
<tr>
<td>5</td>
<td>11.464</td>
<td>13.273</td>
<td>18.60797</td>
</tr>
<tr>
<td>6</td>
<td>13.061</td>
<td>15.660</td>
<td>25.65614</td>
</tr>
<tr>
<td>Varying service rate µ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>8.5515</td>
<td>9.8621</td>
<td>10.05123</td>
</tr>
<tr>
<td>60</td>
<td>8.5345</td>
<td>9.8365</td>
<td>9.017707</td>
</tr>
<tr>
<td>70</td>
<td>8.5205</td>
<td>9.8155</td>
<td>9.99023</td>
</tr>
<tr>
<td>80</td>
<td>8.5088</td>
<td>9.7979</td>
<td>9.96731</td>
</tr>
<tr>
<td>90</td>
<td>8.4989</td>
<td>9.7830</td>
<td>9.94790</td>
</tr>
<tr>
<td>Varying break down rate α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>8.5515</td>
<td>9.8621</td>
<td>10.05123</td>
</tr>
<tr>
<td>0.4</td>
<td>8.5575</td>
<td>9.8683</td>
<td>10.05738</td>
</tr>
</tbody>
</table>
From the above result
As b, λ, and α were increasing then expected system length E (L) is also increasing.
As µ, γ and c are increasing then expected system length E (L) is decreasing.

V. CONCLUSION

The model is derived with an expression of expected system length for M^2/G/1 vacation queueing system with two types of repair facilities and server timeout. Numerical results are given for different varying parameters for the given batch size distribution that shows the impact of the timeout period on the system length.

REFERENCES

AUTHORS PROFILE

Dr. V. N. Rama Devi, Associate Professor of Mathematics, completed her Ph.D from Acharya Nagarjuna University, Guntur. Her Ph.D work was on Optimal Control of Two-Phase N-Policy Queueing Systems with System Breakdowns. She also served as Dean Finishing School at GRIET and also Coordinator for Women’s Development Cell. Dr.Rama Devi’s research interests include developing models for Queueing systems and applications of Multivariate Techniques in which she has more than 10 publications in various journals and conferences. She is currently working on Queueing problems

Y. Saritha completed her Masters degree from Acharya Nagarjuna University and joined as a Research Scholar in the same university under the guidance of Prof.K. Chandan. She has attended 7 National /International conferences and also has published 4 papers in various international journals.

Dr. K. Chandan working as Professor in the department of Statistics at Acharya Nagarjuna University, Guntur, AP, India. He Completed Ph.D in Statistics form IIT Kharagpur. He has guided five Ph.D. candidates and guiding four more. He has written 11 books. His research interests include Operations Research, Queuing Theory, Game Theory, Stochastic Process, Sampling Theory, MIS.