$\alpha_{\scriptscriptstyle (\gamma,\gamma)(\beta,\beta')}$ -Open, Closed Mappings in Topological Spaces

N.Kalaivani

Abstract: In this paper the concept of $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -open, closed mappings have been introduced and some of its properties have been studied.

Keywords: $\alpha_{(\gamma,\gamma')}$ -open set, $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -open mapping, $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -closed mapping, $\alpha_{(\beta,\beta')(\gamma,\gamma')}$ -continuous mapping.

I. INTRODUCTION

O.Njastad [7], Kasahara [4,5], Ogata [8,9] and Kalaivani, Sai Sundara Krishnan[1,2,3] discussed about the α -open sets, operation on topological spaces, $\tau_{\alpha-\gamma}$ and α -(γ , γ')-open sets. Maki & Noiri [6], Umehara, Maki& Noiri[10] and Umehara[11] analyzed the concept of Bioperations in topological spaces.

In this article the $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -open mappings has been introduced and its properties are analyzed. $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -closed mappings, has been introduced and properties are discussed.

Notations: $\alpha_{(\gamma,\gamma')}$ -open set $\to \alpha$ -(γ , γ')-open set , $\tau_{\alpha_{(\gamma,\gamma')}} \to \tau_{\alpha_{-(\gamma,\gamma')}} \to \alpha_{(\gamma,\gamma')}$ -open sets, $X_{TS} \to (X,\tau)$, $Y_{TS} \to (Y,\tau)$, OS \to open set ,CS \to closed set, OSs \to open sets, CSs \to closed sets, TS \to topological space, CM \to continuous mapping, OPM \to open mapping, CLM \to closed mapping, C \to continuous, M \to mapping, NEIGH \to neighbourhood, INV- IMA inverse image, iff \to if and only if, ima \to image, impth \to implies that, theex \to there exists, sucth-such that, OP INJ \to open injection, OP SUR \to open surjection, INJ M \to injection mapping, SUR M \to surjection Mapping, subs \to sub set.

II. PRELIMINARIES

Theorem 2.1. Let $\{A_{\alpha}: \alpha \in J\}$ be the family of $\alpha_{(\gamma,\gamma')}$ -OSs in X_{TS} . Then $\bigcup_{\alpha \in J} A_{\alpha}$ is also an $\alpha_{(\gamma,\gamma')}$ -OS in X_{TS}

.**Definition 2.1.** A M f_M is called an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM iff if for every $\alpha_{(\beta,\beta')}$ -OS, E of Y_{TS} , $f^{-1}{}_M$ (E) -the INV- IMA of E, is an $\alpha_{(\gamma,\gamma')}$ -OS in X_{TS} .

Revised Manuscript Received on July 07, 2019.

N.Kalaivani, Department of Mathematics, Vel Tech Rangarajan, Dr.Sagunthala R & D Institute of Science and Technology, Chennai, India

Definition 2.2. A M $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM iff for each point e in X_{TS} and each $\alpha_{(\beta,\beta')}$ -NEIGH D of f_M (e), there is an $\alpha_{(\gamma,\gamma')}$ -NEIGH E of b sucth f_M

Theorem 2.2. Let f_M be a M. Then the statements mentioned below are equivalent:

- (i) $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM;
- $\begin{array}{ll} \text{(ii)} \ \ f_M \ \ (\ \tau_{\alpha_{(\gamma,\gamma')}} \ \ \text{-cl}(\ E\)) \subseteq \ \ \sigma_{\alpha_{(\beta,\beta')}} \ \text{-cl}(\ f_M \ \ (\ E\)), \text{for every subset} \ E \ \text{of} \ \ X_{TS} \ ; \end{array}$
- (iii) For every $\alpha_{(\beta,\beta')}$ -CS, F of Y_{TS} , $f^{-1}{}_M$ (F) is an $\alpha_{(\gamma,\gamma')}$ -CS in X_{TS} .

III. $\alpha_{(\nu,\nu')(B,B')}$ -OPEN MAPPINGS

Definition 3.1. A M $f_M: X_{TS} \to Y_{TS}$ is assumed to be an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM iff if for each $\alpha_{(\gamma,\gamma')}$ -OS, $H \in \tau_{\alpha_{(\gamma,\gamma')}}$, the ima f_M (H) $\in \sigma_{\alpha_{(\beta,\beta')}}$

Example 3.1. Let $X_{TS} = \{u, v, w\}$, $\tau = \{\phi, X_{TS}, \{u\}, \{w\}, \{u, v\}, \{u, w\}\}$ $Y_{TS} = \{u, v, w\}$, $\sigma = \{\phi, Y_{TS}, \{u\}, \{v\}, \{u, v\}, \{u, w\}\}$.

The operation γ, γ' on τ is given as $A^{\gamma} = A \cup \{u\}$ and $A^{\gamma'} = \begin{cases} A \text{ if } A = \{u\} \\ A \cup \{w\} \text{ if } A \neq \{u\} \end{cases}$ for every $A \in \mathcal{T}$.

The operation β, β' on σ is given as $A^{\beta} = \begin{cases} A & \text{if } v \notin A \\ cl(A) & \text{if } v \in A \end{cases} \text{ and } A^{\beta'} = \begin{cases} A & \text{if } v \in A \\ cl(A) & \text{if } v \notin A \end{cases} \text{ for every } A \in \sigma$

The M f_M is given as f_M (u) = v, f_M (v) = w and f_M (w) = u. Then the ima of every $\alpha_{(\gamma,\gamma')}$ -OS is an $\alpha_{(\beta,\beta')}$ - OS under the M f_M . Hence f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - OPM.

Theorem 3.1. If $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM and $g_M: (Y_{TS},\sigma) \to (Z_{TS},\delta)$ is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ -OPM, then $g_M \circ f_M: (X_{TS},\tau) \to (Z_{TS},\delta)$ is an $\alpha_{(\gamma,\gamma')(\delta,\delta')}$ -OPM.

Proof. The proof follows from the Definition 3.1.

Theorem 3.2. A M $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM

 $\begin{array}{ll} \text{iff for each b} \in X_{TS} \text{ , and for} \\ \text{every} \quad E \in \ \tau_{\alpha_{(\mathcal{I},\mathcal{I}')}} \text{ such that} \\ \\ \text{b} \quad \in \ E \quad , \quad \text{theex} \qquad \text{a} \end{array}$

$\mathcal{O}_{(x,x')(\beta,\beta')}$ -Open, Closed Mappings in Topological Spaces

 $D\in\sigma_{\alpha_{(\beta,\beta)}}\operatorname{sucth} f_M\ (\mathrm{b})\in D\ \text{ and }\ D\subseteq f_M\ (\,E\,).$

Proof. Let E be an $\alpha_{(\gamma,\gamma')}$ - OS of $\mathbf{b} \in X_{TS}$. Then f_M (b) $\in f_M$ (E). Therefore f_M (E) is an $\alpha_{(\beta,\beta')}$ -NEIGH of f_M (b) in Y_{TS} . Then by Theorem 2.2 theex an $\alpha_{(\gamma,\gamma')}$ -open NEIGH, $D \in \sigma_{\alpha_{(\beta,\beta')}}$ sucth f_M (\mathbf{b}) $\in D \subseteq f_M$ (E).

Conversely, let $E \in \tau_{\alpha_{(\gamma,\gamma')}}$ such that $b \in E$. Then , theex a $D \in \sigma_{\alpha_{(\beta,\beta')}}$ sucth f_M (b) $\in D \subseteq f_M$ (E). Therefore f_M (E) is an $\alpha_{(\beta,\beta')}$ -NEIGH of f_M (b) in Y_{TS} and this impth f_M (E) = $\mathrm{U}_{f(x) \in f(A)} \ D$. Then by Theorem 2.1 f_M (E) is an $\alpha_{(\beta,\beta')}$ -OS in Y_{TS} . Hence f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM.

Theorem 3.3. A M $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM iff if for each b $\in X_{TS}$, and for every $\alpha_{(\gamma,\gamma')}$ -NEIGH U of b $\in X_{TS}$, theex an $\alpha_{(\beta,\beta')}$ -NEIGH V of f_M (b) sucth $V \subseteq f_M$ (U).

Proof. Let U be an $\alpha_{(\gamma,\gamma')}$ - NEIGH of $b \in X$. Then by Definition 2.1 theex an $\alpha_{(\gamma,\gamma')}$ -OS, W sucth $b \in W \subseteq U$. This impth f_M (b) $\in f_M$ (W) $\subseteq f_M$ (U). Since f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM, f_M (W) is an $\alpha_{(\beta,\beta')}$ - OS. Hence $V = f_M$ (W) is an $\alpha_{(\beta,\beta')}$ -NEIGH of f_M (b) and $V \subseteq f_M$ (U).

Conversely, let $U \in \tau_{\alpha_{(\gamma,\gamma')}}$ and $\mathbf{b} \in U$. Then U is an $\alpha_{(\gamma,\gamma')}$ -NEIGH of \mathbf{b} and hence, theex an $\alpha_{(\beta,\beta')}$ -NEIGH V of f_M (b) sucth f_M (b) $\in V \subseteq f_M$ (U). That is, f_M (U) is an $\alpha_{(\beta,\beta')}$ -NEIGH of f_M (b). Thus f_M (U) is an $\alpha_{(\beta,\beta')}$ -NEIGH of each of its points. Therefore f_M (U) is an $\alpha_{(\beta,\beta')}$ -OS. Hence f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM.

Theorem 3.4. A M $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')}$ -OPM iff f_M ($\tau_{\alpha_{(\gamma,\gamma')}}$ -int (P)) $\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -int (f_M (P)) , for all $P \subseteq X_{TS}$. **Proof.** Let $b \in \tau_{\alpha_{(\gamma,\gamma')}}$ -int (P) . Then theex $U \in \tau_{\alpha_{(\gamma,\gamma')}}$ sucth $b \in U \subseteq P$. So f_M (P) . Then theex P (P). Since P is an P int (P)). Thus P is an P int (P)). Thus P int (P)) P int (P)). Conversely, let P is an an and hence P int (P) int (P). Conversely, let P int (P) int (P

Proof. Let Q be any subset of Y_{TS} . Clearly $\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))$ is an $\alpha_{(\gamma,\gamma')}$ -OS in X_{TS} . Also $f_{M}\ (\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))\subseteq f_{M}\ (f^{-1}_{M}\ (Q\))\subseteq Q$. Since f_{M} is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - OPM and by Theorem 3.4 , $f_{M}\ (\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -int $(Q\)$. Hence $\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))\subseteq f^{-1}_{M}\ (f_{M}\ (\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))\)$). This impth $\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (Q\))\subseteq f^{-1}_{M}\ (\sigma_{\alpha_{(\beta,\beta')}}$ -int $(Q\)$ for all $Q\subseteq Y_{TS}$.

Conversely , let $P\subseteq X_{TS}$, we obtain $\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(P)\subseteq \tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (f\ (P\))\subseteq f^{-1}_{M}\ (\sigma_{\alpha_{(\beta,\beta')}}$ -int $(f_{M}\ (P\))$). This impth that $f_{M}\ (\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(P\))\subseteq f_{M}$ $(\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(f^{-1}_{M}\ (f_{M}\ (P\))\))\subseteq f_{M}\ (f^{-1}_{M}\ (\sigma_{\alpha_{(\beta,\beta')}}$ -int $(f_{M}\ (P\))))\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -int $(f_{M}\ (P\))$. Consequently $f_{M}\ (\tau_{\alpha_{(\gamma,\gamma')}}$ -int $(P\))\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -int $(f_{M}\ (P\))$, for all $P\subseteq X_{TS}$. By Theorem 3.4 f_{M} is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - OPM.

Theorem 3.6. A M $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM if $f f^{-1}_M (\sigma_{\alpha_{(\beta,\beta')}} \operatorname{-cl} (D)) \subseteq \tau_{\alpha_{(\gamma,\gamma')}} \operatorname{-cl} (f^{-1}_M (D))$, for all $D \subseteq Y_{TS}$.

Proof. Let D be any subset of Y_{TS} . By Theorem 3.5 $\tau_{\alpha_{(\gamma,\gamma')}}$ -int(f^{-1}_M ($Y_{TS} - D$)) $\subseteq f^{-1}_M$ ($\sigma_{\alpha_{(\beta,\beta')}}$ -int ($Y_{TS} - D$)). Then $\tau_{\alpha_{(\gamma,\gamma')}}$ -int ($X_{TS} - f^{-1}_M$ (D)) $\subseteq f^{-1}_M$ ($\sigma_{\alpha_{(\beta,\beta')}}$ -int ($Y_{TS} - D$)). As $\sigma_{\alpha_{(\beta,\beta')}}$ -int (D) = $Y_{TS} - \sigma_{\alpha_{(\beta,\beta')}}$ - cl ($Y_{TS} - D$)), therefore $X_{TS} - \tau_{\alpha_{(\gamma,\gamma')}}$ - cl (f^{-1}_M (D)) $\subseteq f^{-1}_M$ ($Y_{TS} - \sigma_{\alpha_{(\beta,\beta')}}$ -cl (D)) or $X_{TS} - \tau_{\alpha_{(\gamma,\gamma')}}$ - cl (f^{-1}_M (D)) $\subseteq X_{TS} - f^{-1}_M$ ($\sigma_{\alpha_{(\beta,\beta')}}$ - cl (D)). Hence f^{-1}_M ($\sigma_{\alpha_{(\beta,\beta')}}$ -cl (D)) $\subseteq T_{\alpha_{(\gamma,\gamma')}}$ -cl (D)).

Conversely, let $D \subseteq Y_{TS}$ and hence, f^{-1}_{M} ($\sigma_{\alpha_{(\beta,\beta)}}$ - cl (Y_{TS} - D)) $\subseteq \tau_{\alpha_{(\gamma,\gamma')}}$ -cl (f^{-1}_{M} (Y_{TS} - D)). Then X_{TS} - $\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (f^{-1}_{M} (Y_{TS} - D)) $\subseteq X_{TS}$ - f^{-1}_{M} ($\sigma_{\alpha_{(\beta,\beta)}}$ - cl (Y_{TS} - D)). Hence X_{TS} - $\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (X_{TS} - f^{-1}_{M} (D)) $\subseteq f^{-1}_{M}$ (Y_{TS} - $\sigma_{\alpha_{(\beta,\beta)}}$ - cl (Y_{TS} - D)). This gives that $\tau_{\alpha_{(\gamma,\gamma')}}$ -int (f^{-1}_{M} (D)) $\subseteq f^{-1}_{M}$ ($\sigma_{\alpha_{(\beta,\beta)}}$ -int (D)). Using Theorem 3.5, it follows that f_{M} is an $\sigma_{(\gamma,\gamma')(\beta,\beta')}$ -OPM.

 $Q \subseteq Y_{TS}$.

Theorem 3.7. Let $f_M:(X_{TS},\tau)\to (Y_{TS},\sigma)$ and $g_M:(Y_{TS},\sigma)\to (Z_{TS},\delta)$ be two Ms such that $g_M \circ f_M:(X_{TS},\tau)\to (Z_{TS},\delta)$ is an $\alpha_{(\gamma,\gamma')(\delta,\delta')}$ - CM. Then

(i) If g_M is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ -OP INJ then f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM.

(ii) If f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OP SUR then g_M is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ - CM.

Proof. (i) Let $U \in \sigma_{\alpha_{(\beta,\beta')}}$.Since g_M is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ -OPM, then g_M (U) $\in \zeta_{\alpha-\delta}$. Since g_M is INJ and g_M of f_M is an $\alpha_{(\gamma,\gamma')(\delta,\delta')}$ -CM, $(g_M \circ f_M)^{-1}$ (g_M (U)) = $(f_M^{-1} \circ g_M^{-1})$ (g_M (U)) = f^{-1}_M (g^{-1}_M (g_M (U)) = f^{-1}_M (U) is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -OPM in X_{TS} . This proves that f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM.

(ii) Let $V \in \mathcal{G}_{\alpha_{(\delta,\delta')}}$. Since g_M of f_M is an $\alpha_{(\gamma,\gamma')(\delta,\delta')}$ - CM, then $(g_M \circ f_M)^{-1}$ $(V) \in \tau_{\alpha_{(\gamma,\gamma')}}$. Also f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - OPM, so f_M $((g_M \circ f_M)^{-1} (V))$ is an $\alpha_{(\beta,\beta')}$ - OS in Y_{TS} . Since f_M is SUR, $(f_M \circ (g_M \circ f_M)^{-1})$ (V) = $(f_M \circ (f_M^{-1} \circ g_M^{-1}))$ (V) = $((f_M \circ f_M^{-1}) \circ g_M^{-1})$ (V) = g^{-1}_M (V). It follows that g^{-1}_M $(V) \in \sigma_{\alpha_{(\beta,\beta')}}$. This proves that g_M is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ -CM.

IV. $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CLOSED MAPPINGS

Definition 4.1. A M $f_M: X_{TS} \to Y_{TS}$ is defined to be an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - CLM, iff the ima f_M (D) is an $\alpha_{(\beta,\beta')}$ -CS for each $\alpha_{(\gamma,\gamma')}$ - C subs D of X_{TS} .

The operation γ, γ' on τ is defined as $A^{\gamma} = \operatorname{cl}(A)$ and $A^{\gamma'} = \operatorname{int}(\operatorname{cl}(A))$ for every $A \in \mathcal{T}$.

The operation β, β' on σ is defined as $A^{\beta} = \begin{cases} A \text{ if } h \notin A \\ cl(A) \text{ if } h \in A \end{cases}$ and $A^{\beta'} = \begin{cases} A \text{ if } h \in A \\ cl(A) \text{ if } h \notin A \end{cases}$ for every $A \in \sigma$.

The M f_M is given as f_M (a) = a, f_M (b) = b and f_M (c) = b. Then the ima of every $\alpha_{(\gamma,\gamma')}$ - CS is an $\alpha_{(\beta,\beta')}$ - CS under f_M . Hence f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - CLM.

Theorem 4.1. Let $f_M: X_{TS} \to Y_{TS}$ be an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CLM, then the statements mentioned below hold good.

(i) if $g_M:(Y_{TS},\sigma)\to(Z_{TS},\delta)$ is an $\alpha_{(\beta,\beta')(\delta,\delta')}$ - CLM, then $g_M \circ f_M:(X_{TS},\tau)\to(Z_{TS},\delta)$ is an $\alpha_{(\gamma,\gamma')(\delta,\delta')}$ - CLM.

 $\mbox{(ii)} \ \ \sigma_{\alpha_{(\beta,\beta')}} \mbox{-cl } (\ f_M \ (\ P\)) \subseteq f_M \ (\ \tau_{\alpha_{(\gamma,\gamma')}} \mbox{-cl } (\ P\)), \ \mbox{for every subset } P \ \mbox{of} \ X_{TS} \ .$

 $\begin{array}{l} \text{(iii)} \ \ \sigma_{_{(\beta,\beta')}} \ \text{-cl} \ (\ \sigma_{_{(\beta,\beta')}} \ \text{-int} \ (\ \sigma_{_{(\beta,\beta')}} \ \text{-cl} \ (\ f_M \ (\ P \)\)\)\) \subseteq \ f_M \ (\\ \tau_{_{\alpha_{_{(\gamma,\gamma')}}}} \ \text{-cl} \ (\ P \)\), \ \text{for every subset} \ P \ \text{of} \ X_{TS} \ . \end{array}$

(iv) for each subset Q of Y_{TS} and each $\alpha_{(\gamma,\gamma')}$ - OS, P in X_{TS} containing $f^{-1}{}_{M}$ (B), theex an $\alpha_{(\beta,\beta')}$ -OS, W in Y_{TS} containing Q sucth $f^{-1}{}_{M}$ (W) $\subseteq P$.

Proof. The proofs are analogous to the proof of the Theorems 3.1, 3.2, 3.4, 3.5 and 3.6.

Theorem 4.2. Let $f_M: X_{TS} \to Y_{TS}$ be a bijective M. Then the below mentioned statements are equivalent:

(i) f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - CLM.

(ii) f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - OPM.

(iii) f^{-1}_{M} is an $\alpha_{(\beta,\beta')(\gamma,\gamma')}$ -CM.

Proof. (i) \Longrightarrow (ii) The proof follows from the Definitions 3.1 and 4.1.

(ii) \Longrightarrow (iii) Let P be an $\alpha_{(\gamma,\gamma')}$ - CS in X_{TS} . Then $\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P)=P. By (ii) and by Theorem 3.5 , f^{-1}_M ($\sigma_{\alpha_{(\beta,\beta')}}$ -cl $(f_M(P))$) $\subseteq \tau_{\alpha_{(\gamma,\gamma')}}$ -cl $(f^{-1}_M(f_M(P)))$ impth $\sigma_{\alpha_{(\beta,\beta')}}$ -cl $(f_M(P))\subseteq f_M(\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P)). Thus $\sigma_{\alpha_{(\beta,\beta')}}$ -cl $(f_M^{-1})^{-1}(P)$ $\subseteq (f_M^{-1})^{-1}(P)$, for every subs P of X_{TS} , it follows that f^{-1}_M is an $\alpha_{(\beta,\beta')(\gamma,\gamma')}$ - CM.

(iii) \Longrightarrow (i) Let P be an $\alpha_{(\gamma,\gamma')}$ -CS in X_{TS} . Then $X_{TS}-P$ is an $\alpha_{(\gamma,\gamma')}$ -OS in X_{TS} . Since $f^{-1}{}_M$ is an $\alpha_{(\beta,\beta')(\gamma,\gamma')}$ -CM, $(f_M{}^{-1})^{-1}$ ($X_{TS}-P$) is an $\alpha_{(\beta,\beta')}$ -OS in Y_{TS} . But $(f_M{}^{-1})^{-1}$ ($X_{TS}-P$) = f_M ($X_{TS}-P$) = $Y_{TS}-f_M$ (Y). Thus f_M (Y) is an $\alpha_{(\beta,\beta')}$ -CS in Y_{TS} . This proves that f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CLM.

Definition 4.2. Let $id_M: \tau \to P(X_{TS})$ be the identity operation. A M $f_M: (X_{TS}, \tau) \to (Y_{TS}, \sigma)$ is said to be an $\alpha_{id(\beta,\beta')}$ - CLM if for any α -CS, F of X_{TS} , f_M (F) is an $\alpha_{(\beta,\beta')}$ -CS in Y_{TS} .

Theorem 4.3. If f_M is a bijective M and $f_M^{-1}:(Y_{TS},\sigma) \to (X_{TS},\tau)$ is an $\alpha_{(\beta,\beta')id}$ -CM, then f_M is an $\alpha_{id(\beta,\beta')}$ -CM.

Proof. The proof follows from the Definitions 4.1, 4.2.

Theorem 4.4. Suppose that f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CM. Then

(i) If P is an $\alpha_{(\gamma,\gamma')}$ g -CS

in X_{TS} , then the ima f_M (P) is an $\alpha_{(\beta,\beta')}$ g - CS.

$\mathcal{O}_{(\gamma,\gamma')(eta,eta')}$ -Open, Closed Mappings in Topological Spaces

(ii) If Q is an $\alpha_{(\beta,\beta')}$ g - CS of Y_{TS} , then the set $f^{-1}{}_{M}$ (Q) is an $\alpha_{(\gamma,\gamma')}$ g -CS.

Proof. (i) Let V be any $\alpha_{(\beta,\beta')}$ -OS in Y_{TS} sucth f_M (P) $\subseteq V$. By using Theorem 2.2, f^{-1}_M (V) is an $\alpha_{(\gamma,\gamma')}$ -OS containing P. By assumption we have $\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (A) $\subseteq f^{-1}_M$ (V), so f_M ($\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P))) $\subseteq V$. Since f_M is $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -C, f_M ($\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P)) is an $\alpha_{(\beta,\beta')}$ -CS containing f_M (P), impth $\sigma_{\alpha_{(\beta,\beta')}}$ -cl (f_M (P)) $\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -cl (f_M ($\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P))) = f_M ($\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (P)) $\subseteq V$. Hence f_M (P) is an $\sigma_{(\beta,\beta')}$ g-CS.

(ii) Let U be an $\alpha_{(\gamma,\gamma')}$ - OS of X_{TS} such that f^{-1}_{M} (Q) $\subseteq U$ for any subs B in Y_{TS} . Put $F=\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (f^{-1}_{M} (Q)) I ($X_{TS}-U$). It follows from the Remark 3.14 (ii) and Theorem 3.21[3],that F is an $\alpha_{(\gamma,\gamma')}$ -CS in X_{TS} . Since f_{M} is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CLM, f_{M} (F) is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - CS in Y_{TS} . By Theorem 5.5 [3] and Theorem 2.2 (ii) and from the following inclusion, f_{M} (F) $\subseteq \sigma_{\alpha_{(\beta,\beta')}}$ -cl (Q) -Q, it is obtained that f_{M} (F) $=\phi$, and hence $F=\phi$. This impth $\tau_{\alpha_{(\gamma,\gamma')}}$ -cl (f^{-1}_{M} (Q)) $\subseteq U$. Therefore f^{-1}_{M} (Q) is an $\alpha_{(\gamma,\gamma')}$ g-CS.

Theorem 4.5. Let $f_M: X_{TS} \to Y_{TS}$ is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -C and $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ - CLM. Then

(i) If f_M is an INJ M and Y_{TS} is an $\alpha_{(\beta,\beta')}$ - $T_{\frac{1}{2}}$ then X_{TS} is

an $\alpha_{(\gamma,\gamma')}$ - $T_{\frac{1}{2}}$ space.

(ii) If f_M is a SUR M and X_{TS} is an $\alpha_{(\gamma,\gamma')}$ - $T_{\frac{1}{2}}$ then Y_{TS} is

an $\alpha_{(\beta,\beta')}$ - $T_{\frac{1}{2}}$ space.

Proof. (i) Let P be an $\alpha_{(\gamma,\gamma')}$ g-CS in X_{TS} . Then by Theorem 4.4 (i) f_M (P) is an $\alpha_{(\beta,\beta')}$ g-CS. Therefore by assumption P is an $\alpha_{(\gamma,\gamma')}$ -CS in X_{TS} . Therefore X_{TS} is an $\alpha_{(\gamma,\gamma')}$ - $T_{\frac{1}{2}}$ space.

(ii) Let Q be an $\alpha_{(\beta,\beta')}$ g-CS in Y_{TS} . Then it follows from the Theorem 4.4 (ii) and the assumption that $f^{-1}{}_M$ (Q) is an $\alpha_{(\gamma,\gamma')}$ -CS. Hence f_M is an $\alpha_{(\gamma,\gamma')(\beta,\beta')}$ -CLM, implies that f_M ($f^{-1}{}_M$ (Q)) = Q is an $\alpha_{(\beta,\beta')}$ -CS in Y_{TS} . Therefore Y_{TS} is an $\alpha_{(\beta,\beta')}$ - $T_{\frac{1}{2}}$ space.

REFERANCES

- N.KALAIVANI, G. SAI SUNDARA KRISHNAN, ,2013, OPERATION APPROACHES ON A-Γ-OPEN SETS IN TOPOLOGICAL SPACES, INT. J. OF MATHEMATICAL ANALYSIS.NO.10, PP.491-498.
- 2. N.Kalaivani, D.Saravanakumar and G. Sai Sundara Krishnan, On (α - γ , β)- continuous mappings and α -(γ , β)- continuous mappings in topological spaces, 2012,Int. J. Mathematical Sciences and Applications, Vol. 1,pp. 341-347.
- 3. N.Kalaivani & D.Saravanakumar, 2014, On α -(γ , γ')- open sets and α -(γ , γ')- T_i spaces, ICAMM-2014, PSG College of Technology, Completore
- Kasahara, S 1973, 'Characterizations of compactness and countable compactness', Proceedings of the Japan Academy Series A, Mathematical Sciences, vol. 49, pp. 523-524.
- S.Kasahara1979, 'Operation compact spaces', Mathematica Japonica, vol. 24, pp. 97-105.
- H.Maki & T.Noiri 2001, 'Bioperations and some separation axioms', Scientiae Mathematicae Japonicae vol.4, pp. 165-180.
- 7. O.Njastad, On some Classes of nearly open sets, Pacific
- 8. I.Math, 15, (1965) 961- 970.
- Ogata, H 1991a, 'Operation on topological spaces and associated topology', Mathematica Japonica, vol. 36, pp.175-184.
- H.Ogata,1991c, 'Remarks on operation-compact spaces', Memoirs of the faculty of Science Kochi University Series A Mathematics, vol. 15, pp. 51-63.
- J.Umehara, H.Maki& T.Noir, 1992, 'Bioperation on topological spaces and some separation axioms', Memoirs of the Faculty of Science. Series A. Mathematics. Kochi University, vol. 13, pp. 45-59.
- J.Umehara, 1994, 'A certain Bioperation on topological spaces', Memoirs of the Faculty of Science. Series A. Mathematics. Kochi University, vol. 15, pp. 41-49.

AUTHORS PROFILE

N.Kalaivani, M.Sc. M.Phil .B.Ed., Ph.D., working as an associate professor, in the department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology. Teaching Experience 16 Years in

reputed Engineering Colleges. Published 20 research articles in the field of research-Topology. Life Member in ISTE, IAENG. Reviewer for two international Mathematics Journals. Awarded Merit certificates, Proficiency Prizes at various levels of study and

