
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

260

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

 Formal Development of Fault-Tolerant Majority

Based Replica Control Protocol using Event-B

Anupam Singh, Raghuraj Suryavanshi, Divakar Singh Yadav

Abstract: In distributed environment, data availability and

concurrency control both are challenging issues. Data availability

can be maintained by replicating data at several locations or sites

that will improve the availability but at the same time it is very

challenging task to maintain the consistency of it. In order to

improve the performance of the system, it is required to execute

multiple transactions concurrently on several sites. Therefore, we

need to control these concurrent transactions for maintaining

consistency of replica. Replica control become more complex for

the environment where messages are delayed due to

communication failure. In this paper, we develop formal model of

fault-tolerant replica control protocol Using Event-B. Formal

methods are mathematical techniques through which we can

verify the correctness of model. Event-B is a formal method which

is used to develop the model in distributed environment.

Index Terms: Formal Methods, Formal Verification, Event-B,

Replication, Replica control Protocol.

I. INTRODUCTION

 Highlight A Distributed system is a collection of

autonomous computers which are placed at different

locations and connected among themselves through a

network [1][2]. Data management at single site or node is

easy whereas it is difficult when data is placed at different

locations. The major problems which are associated with data

management are data availability and consistency [1][2]. It

was observed that Data availability can be improved through

replication mechanism. Data management will be more

complex when it is replicated at several places. Replica

controlling is a big challenge to achieve data consistency in

distributed system. Replication strategies [3][4][5][6] can be

categorized as: optimistic and pessimistic. Optimistic

replication protocol is also known as lazy replication [3][5] in

which replica may be inconsistent for some time but at the

end it will be verified while Pessimistic replication is more

conservative because an update cannot be written if a lock is

not available. Data availability will be sacrificed using

pessimistic approach [4]. Replication can be also classified as

partial and full replication [4][6]. We are considering full

replication, where copy of same database will be available at

all sites. In order to ensure consistency there are several

replica control schemes [4][5][6]. Distributed 2PL[4][5] is

one of them. It is also a pessimistic approach in which data

availability is sacrificed due to locking.

Revised Manuscript Received on July 02, 2019
Anupam Singh, Raghuraj Suryavanshi, Department of Computer

Science and Engineering, PSIT Kanpur, India.
Divakar Singh Yadav, Department of Computer Science and

Engineering, IET Lucknow, India.

In distributed 2PL, all sites are required to be available for

the commitment of the transaction. In distributed

environment it is very difficult to ensure the availability of all

sites. To overcome this problem, we are considering majority

based replica control protocol [4][5]. Majority based replica

control protocol handles the faulty situations where group of

sites are not available due to any failure reason. In

consideration of faulty environment, we have introduced

notion of resending of vote request, if majority is not

achieved. In this regard, first coordinating site checks the

availability of more than half of the sites, if majority is not

fulfilled it resends the vote request to non responder sites.

The frequency of resending of vote request depends on a

constant value called as threshold. In order to give

verification and formal development of our model, we are

using Event-B that is event-driven formal method. Formal

methods [7][8][9][10] are mathematical techniques that are

used to verify the correctness of model. Event-B is a formal

method which supports development of model in distributed

environment. To ensure the correctness of model, proof

obligations which are generated by Event-B model must be

discharged. Rodin [11][12][13] is an eclipse based

framework which provides an environment to write Event-B

specifications and to discharge proof obligations. The

remainder of this paper is organized as follows: Section 2

provides introduction of the B Method, section 3 provides

system model informally, section 4 presents formal

development of fault tolerant majority based protocol and

section 5 concludes the paper.

II. EVENT-B FORMAL METHOD

Event-B [14][15][16][17][18] is the successor of the B

method permitting to model discrete systems using
mathematical notations. An Event-B specification is made of

two elements: context and machine. Context presents static

part and machine shows dynamic part of model. The machine

contains variables, invariants and events. Events are checked

by different conditions called as guards. When the guards of

the event become true list of actions will be

performed. The state variables are modified by set of events.

The invariants state properties that are defined on variables
must be always satisfied, when variable changes its value in

different events.

III. INFORMAL DESCRIPTION OF FAULT-TOLERANT

MAJORITY BASED PROTOCOL

In this section, we present an informal discussion on fault

tolerant majority based protocol to control database

replication. In full replicated database system, common data

object are present at all sites.

Majority based concurrency

Formal Development of Fault-Tolerant Majority Based Replica Control Protocol using Event-B

261

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

control protocol is appropriate choice to control replicas

under network partitioning or site unavailability. This

protocol ensures that any transaction will be committed under

the availability of more than half of the sites. In order to

check the availability, the transaction submission site i.e.

coordinator site will send vote request message to all other

sites (participating sites). Participating site will send the

response to coordinating site. Coordinating site will count

total number of responses from participating site. If total

number of responses exceeds the majority (more than half of

the sites) then the coordinator will check the latest copy of

replica. To find out latest copy of replica, version number is

used. Each time when writing is done on replica, version

number will be incremented by one. Therefore, the site

having largest version number will have latest copy of

replica. After execution of transaction on latest copy of

replica, the latest version number and replica will be sent to

all available sites. In this paper, we have also considered the

delayed response from participating site. For handling

delayed response, we have introduced notion of timer at

coordinating site. The coordinating site will activate timer

when request message is broadcast to all other participating

sites. The sender will wait for response for that time period.

When time out occurs, coordinating site will count the total

number of responses received. If the majority of sites are not

available, then the sender assumes that either the site is not

available or the message is delayed. The coordinating site

resends the request message to those sites whose response is

not available at coordinating site yet.

IV. FORMAL DEVELOPMENT OF FAULT-TOLERANT

MAJORITY BASED PROTOCOL

 In this section, we present formal modeling of fault tolerant

majority based protocol. In the context part of the model the

site , message, loc lock man and transaction are declared as

carrier set. The set status, vstatus and timeout are declared as

enumerated set. The status specifies the state of the

transaction having values abort, commit and pending while

vstatus having values granted and notgranted. The set

timeout is enumerated set having values active and expire.

The description of variables which are declared in

machine part are as follows:(fig. 1)

- The variable vote_response represents the set of responses

from participating site to coordinating site.

- The variable active_trans is a set of all active transactions

submitted at any site.

- Variable t_status specifies status of transaction at any site.

The mapping (ss mtt) mabort : t_status indicates that status of

transaction at site ss is abort.

- The variable vr_status defines whether vote request granted

or not from site to other site.

- The lock_request variable specifies lock request message

from site to its local lock manager.

- The variable lock_status specifies status of lock request at

any site. The mapping (ss m granted) : lock_status indicates

that lock status of site ss is granted.

- The variable vn is a version number of a site which is a

natural number.

- The variable activesite specifies all available sites that is

participating in the processing of transaction.

- The variable trans defines the set of all active transactions.

- The variable cosite specifies set of coordinator site.

- Variable sitetime specifies status of timer at particular site.

The time out value of any site may be either expire or active.

- The variable verval represents value of version number

which is defined as set of natural number.

- The variable sender is defined as sender : (message m site).

The mapping (mmmss):sender indicates that message mm

has been sent by sender ss.

- Variable deliver ensures delivery of message at particular

site.

- The variable vnm specifies the version number of message.

- The variable msgfortran specifies update message for any

transaction. The mapping (mm m tt) : msgfortran indicates

that update message mm for transaction tt has been sent.

- The variable noofattempt represents number of attempts a

vote request can be sent from coordinating site to other

participating sites.

- The variable threshold is a constant which defines the upper

limit of number of attempts. It is used to fix up the number of

times a site can resend vote request to participating sites if

any failure occurs

 The variables vn, noofattempt are initialized to zero while

threshold is initialized to some positive constant. Remaining

variables are initialized to ϕ.

The Event-B specification of our model are as follows:

4.1. Transaction initiation and lock request to its local lock

manager

 Submission of transaction is shown in fig.2(Transaction_

Initiate event). This event specifies the submission of fresh

transaction. The site on which a new transaction is submitted,

known as coordinator site. The guards (grd3 and grd4) of this

event shows that transaction tt is a fresh transaction and it is

not active at site si respectively. Due to initiation of this event

tt will become active at site si (act1 and act2). The action

act3 make site si as coordinating site for transaction tt. The

action act4 set the status of transaction as pending.

After submission of transaction, site sends lock request

message to local lock manager for requested data items by the

transaction (Send Lock Req event of fig.2). The guard grd3

specifies that site ss has not done request for its local lock

manager llm. The guard grd4 ensures that transaction tt is

active at site ss.

Due to occurrence of the event lock request set will make

the entry of lock requests of the site ss to its local lock

manager llm (act1).

4.2. Sending vote request to participating sites and vote

response

This event (Send_Vote_Req) specifies sending of vote

request message by coordinating site to all other

sites(participating sites). In this model fault tolerance for site

crash and delayed message lost has been considered.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

262

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

Figure 1: Variables and Invariants of Machine

In faulty environment, it may possible that participant sites

are available but the reply messages sent by them may be

delayed. It may cause to abort transaction at coordinator site

because of majority is not achieved although sufficient no of

participant sites are available but their reply messages were

delayed. In our approach, we are handling this situation by

rebroadcasting request messages only to those participant

sites from where response has not been received.

In this event (Send_Vote_Request of fig. 3), Site ss is a

coordinating site for transaction tt that is ensured through

guard grd2.The guards (grd3 and grd4) ensures that tt is an

active transaction at site ss and it’s request to its local lock

manager is fulfilled respectively. The guard (grd5) specifies

that more than half of the sites are not available. Due to

occurrence of this event, status of the site ss for transaction tt

will be set to pending and response timer is activated (act1)

through action (act2).

Figure 2: Transaction Submission and Sending of Lock Request

The event (Send Response) specifies the sending of response

from participating site to coordinating site (see fig. 3).

MACHINE Majority

SEES context1

VARIABLES

activesite, ,vote_request, active_trans,

t_status,vr_status,lock_request, lock_status, vn, cosite,

sitetime, verval, trans, sender,deliver, vnm, msgfortran,

noofattempt, threshold

INVARIANTS

inv1 : vote_response∈site ⇸ site

inv2 : active_trans∈site↔transaction

inv3 : t_status ∈ (site×transaction)⇸status

inv4 : vr_status ∈ (site × site) ⇸ vstatus

inv5 : lock_request ∈ site ↔ loc_lock_man

inv6 : lock_status ∈ site → vstatus

inv7 : vn∈ site→ℕ

inv8 : activesite⊆site

inv9 : finite(activesite)

inv10 : trans ⊆transaction

inv11 : cosite ∈ trans→site

inv12 : sitetime ∈ site→timeout

inv13 : verval⊆ℕ

inv14 : sender ∈ message⇸site

inv15 : deliver ∈ site↔message

inv16 : vnm ∈ message⇸ℕ

inv17 : msgfortran ∈ message⇸trans

inv18 : noofattempt ∈ site→ℕ

inv19 : threshold ∈ ℕ

Transaction_Initiate≙

ANY si, tt

WHERE

grd1 : si∈ site

grd2 : tt∈ transaction

grd3 : tt∉ trans

grd4 : (si↦tt)∉ active_trans

grd5 : (si↦tt)∉ dom(t_status)

THEN

act1 :
 active_trans≔ active_trans ∪

{si↦tt}

act2 : trans≔ trans∪ {tt}

act3 : cosite(tt)≔ si

act4 :
t_status≔ t_status∪

 {(si↦ tt)↦pending}

END

Send_Lock_Req ≙

ANY ss, llm, tt

WHERE

grd1 : tt∈ trans

grd2 : llm ∈ loc_lock_man

grd3 : (ss↦llm) ∉ lock_request

grd4 : (ss ↦ tt) ∈ active_trans

THEN

act1 :
lock_request ≔ lock_request ∪
 {ss↦llm}

END

Formal Development of Fault-Tolerant Majority Based Replica Control Protocol using Event-B

263

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

Figure 3: Vote Request and Send Response

After receiving of vote request for a transaction tt from

coordinating site, participating sites send response to it. The

guard grd6 specifies that participants site sj has not sent the

vote response to coordinator site ss. The guard grd7 ensures

that response timer is active at coordinating site ss and status

of transaction tt is pending is ensured by guard grd9.

Due to occurrence of this event vote response will be sent

by participating site sj to coordinating site ss.

Figure 4: Message Failure and Acceptance of Vote Response

4.3. Failure of Message and Acceptance of Vote Response

This event (Message_Failure event) specifies modelling of

delayed message (see fig. 4). If there is any situation when

site is available but vote response is not received on

coordinating site then the entry in vote response will be
omitted from vote response. The guards grd3 and grd4

ensures that coordinating site and participating sites are

different. The guard grd5 ensures participant site sj has sent

the vote response to coordinating site ss. This event removes

the entry of vote response since message is delayed or lost.

The event (Accept_VR) models the acceptance of vote

response at coordinating site. Site ss which is defined as

coordinating site checks the vote responses from
participating sites(sj). The guard grd5 specifies that

participating site sj has sent the response to coordinating site

ss. The guard grd7 ensure that in the knowledge of

coordinating site transaction tt is not active at participating

site sj since response has not received. Due to occurrence of

this event the vr status will be updated by granted (act1). The

set of active site will also have updated for transaction tt (act2

and act3).

Send_Vote_Request ≙

ANY tt, ss, llm

 WHERE

grd1 : tt ∈ trans

grd2 : ss=cosite(tt)

grd3 : (ss↦ tt) ∈ active_trans

grd4 : ss↦llm ∈ lock_request

grd5 : card(activesite)<card(site) ÷2

grd6 : noofattempt < threshold

THEN

act1 : t_status(ss↦tt) ≔ pending

act2 : sitetime(ss)≔ active

act3 : noofattempt(ss)≔ noofattempt(ss)+1

END

Send_Response ≙

ANY sj,ss,tt

WHERE

grd1 : sj∈ site

grd2 : tt∈ trans

grd3 : ss = cosite(tt)

grd4 : (sj↦ss)∈ dom(vr_status)

grd5 : (sj)∉ dom(vote_response)

grd6 : vr_status(sj↦ss)=notgranted

grd7 : sitetime(ss)=active

grd8 : (ss↦tt)∈ dom(t_status)

grd9 : t_status(ss↦tt)=pending

THEN

act1 :
vote_response ≔ vote_response

 ∪ {sj↦ss}
END

Message_Failure ≙

ANY sj, ss, tt

WHERE

grd1 : sj∈site

grd2 : tt∈trans

grd3 : ss=cosite(tt)

grd4 : sj≠ss

grd5 : (sj↦ss) ∈ (vote_response)

THEN

act1 :
vote_response ≔ vote_response∖
 {sj↦ss}

END

Accept_VR ≙

ANY sj, tt, ss, llm

WHERE

grd1 : tt∈trans

grd2 : ss=cosite(tt)

grd3 : sj∉ activesite

grd4 : sitetime(ss)=active

grd5 : (sj↦ss) ∈ vote_response

grd6 : (ss↦tt)∈ active_trans

grd7 : (sj↦tt)∉ active_trans

grd8 : (ss↦llm) ∈ lock_request

THEN

act1 : vr_status(sj↦ss)≔ granted

act2 : activesite≔ activesite∪ {sj}

act3 :
active_trans≔active_trans ∪
 {sj↦tt}

act4 : verval≔verval∪ {vn(sj)}

END

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

264

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

4.4. Finding Maximum Version Number of Replicas and

Commit Operation at Coordinating Site

This event models the computation of maximum version
number to find the latest copy of replica (Max_Version of

fig. 5). The replica which has highest version number will be

latest one. Initially, version number of all sites will be zero

and it will be incremented by one. The set verval stores

version numbers (vn) of each site. The guard grd5 and grd6

that value of variable maxver will be the maximum value of

all versions present in verval set. The action act1 assigns the

maximum version number to site ss.
The event Cord Commit specifies commitment of transaction

at coordinating site ss (see fig. 5). At coordinator site

ss(grd2), if majority is fulfilled then the transaction executes

and change its state from pending to commit state. For

commitment more than half of the sites(grd4) must be

available. After the commitment version number will be

incremented by one.

Figure 5: Maximum version number and coordinator commit

4.5. Broadcast Updations to Other Participating Sites and

Receive

This event (Broadcast) models the transfer of updations done

on coordinating site to all other participating sites (see fig. 6).
After commitment of transaction the coordinating site

broadcast a message to all sites to maintain consistency in

database. The guard grd1 and grd2 specifies that transaction

tt is an active transaction whose coordinating site is ss. The

Guards grd3 and grd4 ensures that message mm has not been

sent. The guard grd6 specifies that transaction has been

committed at coordinator site ss. On occurrence of the event,

message mm is broadcasted by site ss (act1) sender will be
updated(act1) and version number of coordinating site has

been assigned to message (act2). The action act3 add the

transaction tt to msgfortran set. This event(Receive) specifies

Figure 6: Broadcast and Receive Event

receiving of message at participating site regarding updations

given by coordinator for transaction tt (see fig. 6). The guard

grd2 ensures that message mm has already been sent.The

guard grd3 checks the version number of the message(vnm).
On occurrence of this event deliver set will be updated with

the entry of message and its sender details (act1).

4.6. Commit Operation of Transaction on Participating Site

and Abort on Coordinator Site

This event (Part_Commit) models the execution of commit

operation at participant site (see fig. 7). For maintaining the

consistency, all participating sites should execute commit

operation. Transaction tt is an active transaction at site ss
(grd6, grd7) then participating sites assigned latest version

number.

The guard grd10 checks the delivery of message while grd11

verifies that whether the majority is achieved or not. Due to

occurrence of the event, status of participating sites for

transaction tt will be committed and new version number will

be allotted (act1, act2).

Max_Version ≙

ANY ss, maxver, tt

WHERE

grd1 : maxver∈ℕ

grd2 : tt∈trans

grd3 : ss=cosite(tt)

grd4 : sitetime(ss)=expire

grd5 : ∀x·x∈verval⇒ maxver≥ x

grd6 : maxver=max(verval∪{0})

THEN

act1 : vn(ss)≔ maxver

END

Cord_Commit ≙

ANY sj, tt, ss

WHERE

grd1 : tt∈trans

grd2 : ss=cosite(tt)

grd3 : (sj↦tt)∈active_trans

grd4 : card(activesite)>card(site)÷2

grd5 : (sj↦ss)↦granted ∈vr_status

THEN

act1 : vn(ss)≔ vn(ss)+1

act2 : t_status(ss↦tt)≔commit

END

Broadcast

ANY ss, mm, tt

WHERE

grd1 : tt∈ trans
grd2 : ss=cosite(tt)

grd3 : mm∈ message

grd4 : mm∉ dom(sender)

grd5 : (ss↦tt)∈ dom(t_status)

grd6 : t_status(ss↦tt)=commit

THEN

act1 : sender≔ sender∪ {mm↦ss}

act2 : vnm(mm)≔ vn(ss)

act3 : msgfortran(mm)≔ tt
END

Receive

ANY ss, mm, tt

WHERE

grd1 : ss∈ Site

grd2 : mm∈ dom(sender)

grd3 : mm∈ dom(vnm)

grd4 : mm↦tt ∈ msgfortran

THEN

 act1 : deliver≔deliver∪{ss↦mm}

END

Formal Development of Fault-Tolerant Majority Based Replica Control Protocol using Event-B

265

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

Figure 7: Participant Commit and Coordinator Abort

When half of the sites are not available (Cord_Abort event)

and number of attempts for revoting exceeds the threshold

then the transaction will be aborted. In event (Co_Abort of

figure 7), transaction tt has been submitted at coordinator site
is ensured through guards grd2 and grd4. The guard grd6

specifies that majority of sites are not available. Participating

sites (sj) are available in activesite which is ensured through

grd3. The guard grd8 specifies that the vote request status of

participating site sj on coordinator site ss is granted. Due to

occurrence of this event status of transaction tt will be

aborted as majority is not fulfilled (act1).

4.7. UNLOCK AND TIMEOUT EVENT

In figure 8, When a transaction on site changes its state from

pending to either commit or abort, the site executes unlock

request to its local lock manager (Unlock Event). The guards,

grd2 and grd3 check whether lock is already acquired or not.

If lock is acquired and transaction has been committed

successfully then the entry for the acquired lock will be

removed from lock request (act1). This event(Timeout)

models timing boundaries for a transaction tt (see fig. 8). The
guard grd1 specifies that transaction tt is an active transaction

submitted on site ss which is coordinator site (grd2). The

guard grd3 checks that the timer is active or not. On

occurrence of the event, if duration is completed then it will

be expired for the identified site

Figure 8: Unlock and Timeout

V. CONCLUSION

In this paper, we have done the formal development of fault

tolerant majority based replica control protocol. Formal

methods are techniques to verify the correctness of the

system mathematically. Replica control is challenging issue

to provide consistency in distributed environment. In faulty

environment network may be partitioned due to link failure or

messages may be delayed. In order to control the replica

under network partitioning, we are considering majority
based replica control protocol. In this protocol even sites are

available but due to delayed messages majority will not be

fulfilled incurred extra cost for completion of transaction. In

this paper, we have introduced the notion of time period

which is allotted to coordinator site (transaction submission

site). The coordinator site will resend the request messages to

those participating sites from where messages are not

received in allotted time period. We have also used a control
variable named as threshold which control total number of

times a request message can be sent by transaction

coordinator site. For the formal verification of our model, we

have considered Event-B as a formal method.

In this model, we have formally verified replica control

protocol using Event-B. Event-B model generates proof

obligations. In order to ensure correctness of model these

proofs must be discharged. While discharging proofs all
invariants are preserved (no violation) We have considered

RODIN platform for writing B specifications.

Part_Commit

ANY ss, tt, si, mm

WHERE

grd1 : ss∈ activesite

grd2 : tt∈ trans

grd3 : si=cosite(tt)

grd4 : mm∈ dom(sender)

grd5 : mm∈ dom(vnm)

grd6 : (ss↦tt)∈ active_trans

grd7 : (ss↦tt)∈ dom(t_status)

grd8 : t_status(ss↦tt)=pending

grd9 : sender(mm)=si

grd10 : ss↦mm∈deliver

grd11 : card(activesite)>card(site)÷2

THEN

act1 : t_status(ss↦tt)≔ commit

act2 : vn(ss)≔ vnm(mm)

END

Co_Abort

ANY sj, tt, ss

WHERE

grd1 : tt∈ trans

grd2 : ss=cosite(tt)

grd3 : sj∈ activesite

grd4 : tt∈ transaction

grd5 : (ss↦tt)∈ active_trans

grd6 : card(activesite)<card(site)÷2

grd7 : (sj↦ss)∈ dom(vr_status)

grd8 : vr_status(sj↦ss)=granted

grd9 : noofattempt(ss)=threshold

THEN

act1 : t_status(sj↦tt)≔abort

END

Unlock ≙

ANY ss, llm, tt

WHERE

 grd1 : ss∈ site

 grd2 : llm∈ loc_lock_man

 grd3 : (ss↦llm)∈ lock_request
(

ss↦llm)∈lock_request

 grd4 : (ss↦tt)∈ dom(t_status)

 grd5 : t_status(ss↦tt)=commit

THEN

act1 :
lock_request ≔ lock_request∖
{ss↦llm}

END

Timeout ≙

ANY ss, tt

WHERE

grd1 : tt∈ trans

grd2 : ss=cosite(tt)

grd3 : sitetime(ss)=active

THEN

act1 : sitetime(ss)≔ expire

END

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-9S, July 2019

266

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

In order to verify the correctness of our model we have also

added following invariant.

!ss, tt(ss : SITE &tt : trans & ss = cosite (tt) & (ss m tt) :
dom(t_status) & t_status (ss m tt) = commit) y

card(activesite) > card(site) / 2)

This invariant ensures that site ss is coordinating site and

status of transaction tt is commit then majority of sites are

available. In our Model 74 proofs were generated by system,

out of which 56 proofs are discharged automatically and 18

proofs are discharged interactively. While discharging the

proofs of the model it gives clear insight about the protocol.
In future we will extend our model for dynamic partitioning

in distributed environment

through refinement.

REFERENCES

1. M. Ozsu and P. Valduriez: Principles of Distributed

Database Systems.

2. Pearson Education (Singapore) Pte.Ltd. India 2004.
3. M. Singhal, N.G. Shivratri: Advanced Concepts in

Operating Systems.

4. Tata McGraw- Hill Book Company, 2012.

5. R. Suryavanshi and D.Yadav,Rigorous Design of Lazy

Replication System Using Event-B, Communications in

Computer and Information Science ISSN: 1865-0929,

Volume 0306, Springer, Verlag Germany 2012, pp

400-411.
6. Helal, A., Heddya, A. and Bhargava, B.: Replication

Techniques in

7. Distributed System. Kluwener Academic Publishers

(1997).

8. J. Gray, P. Helland, P. E. ONeil, and D. Shasha. The

dangers of replication and a solution. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data,

pages 173-182, Montreal, Canada, June 1996.
9. Kemme, B., Alonso, G.: A new approach to developing

and implementing eager database replication protocols.

ACM Transaction Database System, 25(3), 2000, pp

333-379.

10. Paul Ammann, Sushil Jajodia, and Indrakshi Ray. Using

formal methods

11. to reason about semantics-based decompositions of

transactions. In
12. Umeshwar Dayal,Peter M. D. Gray, and Shojiro Nishio,

editors, VLDB

13. . Morgan Kaufmann, 1995, pp 218-227.

14. D. Yadav and M. Butler. Application of Event B to

global causal ordering for fault tolerant transactions. In

Proc. of Workshop on Rigorous Engineering of Fault

Tolerant System, REFT05,Newcastle upon Tyne, 19

July 2005, pp 93-103.
15. Paul Ammann, Sushil Jajodia, and Indrakshi Ray.

Applying formal

16. methods to semantic-based decomposition of

transactions. ACM Transaction on Database System.,

22(2), 1997, pp 215-254.

17. Jean-Raymond Abrial and Dominique Cansell. Clickn

prove: Interactive

18. proofs within set theory. In David A. Basin and Burkhart
Wolff, editors, TPHOLs,volume 2758 of Lecture Notes

in Computer Science, Springer, 2003, pp 124.

19. C Metayer, J R Abrial, and L Voison. Event-B language.

RODIN deliverables

,http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005.

20. M. Butler, J.-R. Abrial, and R. Banach, From Action

Systems to Distributed Systems: The Renement

Approach. Tayloramp; Francis,2016, ch. Modelling and
Hybrid Systems in Event-B and Rodin.

21. Michael Butler, Cli B. Jones, Alexander Romanovsky,

and Elena Troubitsyna, editors. Rigorous Development

of Complex Fault-Tolerant Systems [FP6 IST-511599

RODIN project], volume 4157 of Lecture Notes in

Computer Science. Springer, 2006.

22. D. Yadav and M. Butler. Formal specifications and

verification of message ordering properties in a
broadcast system using Event B. In Technical

Report,School of Electronics and Computer Science,

University of Southampton, Southampton, UK, May

2007.

23. R. Suryavanshi, D. Yadav, Modeling of Multiversion

Concurrency

24. Control System Using Event-B in Federated Conference

on Computer
25. Science and Information systems (FedCSIS) 9-12

September,

26. Poland,indexed and published by IEEE ISBN

978-83-60810-51-4, 2012, pp 1397-1401.

27. R. Banach, M. Butler, S. Qin, N. Verma, and H.

Zhu,Core Hybrid Event-B I: Single Hybrid Event-B

machines, Science of Computer Programming, 2015.

28. E. Elsayed , G. El-Sharawy and E.Sharawy, Integration
Of Automatic

29. Theorem Provers In Event-B Patterns,International

Journal of Software

30. Engineering amp; Applications (IJSEA), Vol.4, No.1,

Jan. 2013.

31. D. Yadav and M. Butler. Formal specifications and

verification of message ordering properties in a

broadcast system using Event B. In Technical
Report,School of Electronics and Computer Science,

University of Southampton, Southampton, UK, May

2007.

AUTHORS PROFILE

Anupam Singh is pursuing Ph.D. in

Computer Science and Engineering. His

research area is formal verification and

validation. Mr. Singh is reviewer of
some reputed journals.

Dr. Raghuraj Suryavanshi has

done phd in computer sciecnce &

Engineering. He has published papers

in the area of formal verification of
critical properties of distributed system.

He was also awarded as Teacher

fellowship award from state university AKTU

Lucknow. Mr. Singh has also visited many

countries for their research presentation and

special talk in the area of formal verification.

Formal Development of Fault-Tolerant Majority Based Replica Control Protocol using Event-B

267

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10410789S19/19©BEIESP

DOI: 10.35940/ijitee.I1041.0789S19

Dr. Divakar Singh Yadav has done

Ph.D. (Computer Science), University of

Southampton, United Kingdom. His area
of research is Formal Methods,

Distributed Computing, Database

Systems, Verification of Transactional

Information Systems, Rigorous Design of

Distributed Transactions.

