Modeling and Simulation of Hybrid Micro Grid Employing DG, PV, Wind and Fuel cell

Y Hema, T S Kishore, S D Kaushik

Abstract: Electricity has a noteworthy position in our everyday life. For the reason that of the electrical supply is not up to the requirement of the power demand, some remote areas are affected. The micro grids are projected to make available power for hill area networks. Still the RES are atmospheric friendly but they generate power simply when they are available. By way of the additional rise of energy options through RES the need of non-renewable also essential for steady flow of power to the isolated networks. The diesel generators tend to be longer lasting too, offering more opportunities to meet power demand in outback locations. In this thesis a hybrid micro grid system consisting of solar, wind, fuel cell and diesel generator is modeled and simulated. The Modeling of PV array based solar power generation was implemented and the proposed model is simulated at temperature and variable irradiance. Standalone wind energy conversion systems offer a feasible solution to generate power at isolated localities where utility grid extension is not feasible. In this thesis the diesel generator comprises of diesel engine and generator is used for emergency power supply. Dynamic characteristics simulation a proton exchange membranes fuel cell was introduced for its fast response and zero emission. The hybrid microgrid system is modelled and simulated using MATLAB/SIMULINK and the results are summarized.

Keywords: Diesel generator, Fuel cell, Hybrid micro grid, Inverter and solar photovoltaic

I. INTRODUCTION

In Today’s life electrical energy has an effective role for the reason that of its flexibility and efficiency. Even if 100% electricity is available in India but some outback areas still requires power to meet their demand. Because of this their face plenty of problems and it affects their quality of life such as agriculture, economics etc. Consecutively avoid those problems micro-grids are introduced for produce power to rural areas. A micro-grid is a distributed energy system which connects both the power grid and local areas. It requires slighter decision makers and has quick response. Renewable energy sources are ecological, no fuel cost, transport cost also less and high act but the negative aspect of these are supply is available only when they are accessible. Production of solar energy is typically depends up on irradiations, if it is rainy or cloudy supply is bare minimum and suppose wind speed is less also minimum amount of power is formed like that so, by with simply renewable energy sources stability to continuous flow of power is not possible in all climate conditions.. A hybrid micro-grid generates power from both the renewable and non-renewable energy sources to get together the steady flow of energy. Although conventional energy sources have some demerits such as high fuel cost, more pollution, availability of is difficult but it gives the backup protection in rural areas. Usually a hybrid micro grid comprise of solar, wind, biomass, geothermal, fuel cell, tidal, hydro, DG, etc. Out of all non-conventional energy sources solar, wind, fuel cells are preferable due to its high potential, easily available and fuel cells make zero emission if pure hydrogen is supplied. And from conventional sources DG (diesel generator) is employed for stand- alone system because it give the uninterrupted power supply. The hybrid micro grid is a realistic solution for the stand-alone areas to meet the difficulties due to its reliability. The paper gives the modeling of hybrid micro grid contains the solar PV, wind, diesel generator, fuel cell, bridge rectifier, dc-dc boost converter, three phase inverter, load and dump load. The hybrid micro grid system has been aim to turn out 6000 watts particularly for island areas. This is a small scale network gives the prop up to the rural areas especially for improvement their life’s. The system is designed with the help of MATLAB/SIMULINK (word) has been included in the final paper. 2. Final paper is prepared as per journal the template. 3. Contents of the paper are fine and satisfactory. Author (s) can make rectification in the final paper but after the final submission to the journal, rectification is not possible.

II. SYSTEM MODELING

The hybrid micro-grid modeled in the company of solar PV, wind, fuel cell and diesel generator. These four sources are individually connected with DC-DC boost converters to elevate the voltage level and these are attached to the dc bus to get the precise dc output without any fluctuations. The DC voltage is converted to AC by using three phase inverter and then AC voltage is fed to the load through the AC bus. The block diagram representation of the designed system is given below.
Modeling and Simulation of Hybrid Micro Grid Employing DG, PV, Wind and Fuel cell

A. Solar PV cell:

In solar PV system, electrically energy is produced from the solar energy. Solar energy is depends up on solar radiations. The main components of solar system are photovoltaic array, PV modules, solar cells and battery bank. PV array is core of the system, it is the combination of PV modules and numbers of solar cells are one module. When solar radiations are reached to panels, each solar cell produces a DC voltage. Extra amount power is store in the battery so the solar PV panel load current expressed as

\[ I_{PV} = N_p * I_{ph} - N_p * I_{R2} (\exp \left( \frac{qV_T}{kT} \right) - 1) \]  

(1)

\[ I_{ph} = I_{sc} K_p (T - T_r) \]  

(2)

\[ I_{R2} = I_{tr} \left( \frac{S}{1000} \right) \exp \left( \frac{qE_g}{kT} \right) \left( \frac{1}{T_r} - \frac{1}{T} \right) \]  

(3)

Where

- \( I_{PV} \) : Reverse saturation current,
- \( E_g \) : Energy band gap

The three phase, when connected to power system, the load requirements are nominal voltage of 440V with 50Hz frequency. The requirements of the load, in this case, can be met by either converting the DC to AC supply and then stepping up the voltage using a step-up transformer or by using boost converter. Using a transformer requires special equipment and space for maintenance and operation. A boost converter is used with a gain value of 0.0114 and the voltage increased to 1000V thereby the current (I) value is 1.5A.

\[ P_{im} = \frac{1}{2} \rho A v^2 C_p (\alpha, \beta) \]  

(4)

Power transferred to the wind turbine rotor is given by

\[ C_p = \frac{P_{wind \, turbine}}{P_{air}} \]  

(5)

The wind turbine dynamic equation is given by

\[ T_m - T_s = B \omega_m + J \frac{d\omega_m}{dt} \]  

(6)

Electrical torque of the PMSG can be expressed as

\[ T_s = \frac{3}{2} f \left( q_m i_q + (L_d - L_q) i_d i_q \right) \]  

(7)

Simulink model of wind energy conversion is modeled in MATLAB. The diagram consists of wind turbine, PMSG, bridge rectifier and also one boost converter.

B. Modeling wind system

In order to obtain constant voltage magnitude and stabilized frequency, the as varying voltage output from the variable wind turbine permanent magnet synchronous generator is given to a rectifier and a boost converter is used for voltage regulation.
The simulation of a diesel generator system involves diesel engine, excitation system, and synchronous generator is modeled in MATLAB/SIMULINK as shown in Fig. 3.12. The diesel generator can be operated within the permissible range of 500V to 600V for constant fuel input to maintain the stability of the system. DG system is directly connected to isolated load is simulated in MATLAB/SIMULINK environment.

![Simulink model of diesel generator](image)

**D. Modeling Fuel cell:**
Fuel cell is one of the important sources of producing power for isolated areas. Fuel cell generates power for long times as the fuels of hydrogen and oxygen supplied regularly. It gives primary protection to the system. Compared to all the fuel cells PEM fuel cell is the best one due to its quick response and less emission. It also gives back up protection to the system. As these fuel cells are used in hill areas it will give implementation to that areas. Fuel cells also play an important role for supplying power to the remote areas due to its low cost, high efficiency, fast response and mainly less pollution. Mathematical modeling of PEM fuel cell is given as follow:

\[ V_{\text{fuel cell}} = \frac{\text{E}_n - \text{V}_d - \text{V}_o - \text{V}_c}{\text{P}_{\text{max}}} \]  

The activation voltage of fuel cell is given by:

\[ V_d = \lambda_1 + \lambda_2T + \lambda_3T \ln(CO_2) + \lambda_4T \ln(I) \]  

The ohmic voltage of fuel cell is given by:

\[ V_c = I \times (R_{pp} * R_{pp}) \]  

The concentration voltage drop is given by:

\[ V_C = -B \times \ln \left[1 - \left(\frac{I}{I_{m,n}}\right)^{n} \right] \]  

The fuel cell stack output voltage is given is:

\[ V_{\text{fuel cell}} = N \times V_{\text{fuel cell}} \]  

The output power of the PEM fuel cell stack is:

\[ P_f = V_s \times I \]  

The simulink model of fuel cell is modeled in MATLAB. Fuel cell modeled with fuel cell stack, one boost converter here also two stage of operation is there for fuel cell operation. With using some equations fuel cell is designed and produces DC power in the first stage. And in second stage boost converter is used for getting required level of voltage. The simulation model of PEM fuel cell is given as

![Simulink model of PEM fuel cell stack system](image)

**III. SIMULATION RESULTS AND DISCUSSION**

The input voltage to the boost converter is \( v_i \) of 230V. It is boosted with a duty cycle value \( D \) of 0.8975 to which the gain value will be 0.0111, so as to obtain the output voltage of 1000V. The designed inductor \((L)\) and capacitor \((C)\) values are 0.000384 and 0.0000183F respectively. Thereby they obtained output voltage \((v)\) and current \((I)\) from boost converter are \( v = 1000V \) and \( I = 1.5A \).
Modeling and Simulation of Hybrid Micro Grid Employing DG, PV, Wind and Fuel cell

Output powers of the load, inverter and diesel generator is shown in figure 4, 6, 3. Renewable energy sources (solar PV, wind, fuel and DG) supplies power through the inverter during normal periods (0 to 0.5 and 1 to 5 seconds) inverter output power is 4500 watts. For the duration of the period of 0.5 to 1 seconds inverter output power is zero. Output power has ripples due to inverter controller is not there in the system. Throughout the period of 0 to 0.5 and 1 to 5 seconds diesel power is zero. Diesel generator supplies power during abnormal periods (0.5 to 1 seconds) diesel output power is 3000 watts. So, power is continuously supplied to the load. The load output power is 3500 watts.

IV. CONCLUSION

In this project, simulation of solar PV, PMSG based variable speed wind energy conversion system and PEM fuel cell stack and diesel generator based hybrid micro-grid system is designed in MATLAB/SIMULINK. Diesel generator can be utilized a standalone, emergency and standby units because of its following characteristics: availability, durability, fast ramp up and reliability etc. Diesel generators have high operating cost and generate electricity on demand when compared with renewable energy sources. Even with the best alternative system such as solar energy or wind energy, sometimes the weather may not cooperate and will land us in darkness when the main power source fails. By using hybrid micro grids for isolated loads the social and economic status of people will be improved.

REFERENCES:


AUTHORS PROFILE

Mrs. Y Hema has completed her B.Tech in Electrical and Electronics Engineering from JNTU Kakinada. Currently she is pursuing her post graduation in Power and Industrial Drives from the same university.

Dr. T S Kishore was born in India. He received his B.Tech degree in Electrical and Electronic Engineering and M.tech in Power System Control and Automation from Jawaharlal Nehru Technological University, Hyderabad, India in 2003 and 2006 respectively. He received his Ph.D. degree in the area of Power Transmission Lines Design and Cost Optimization from Alternate Hydro Energy Centre, IIT Roorkee, India in 2015 under QIP program of AICTE. Since 2006, he is serving as Assistant Professor in the Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India. He is a member of ISTE, India and IAENG, Hongkong. His main research interests are power transmission, renewable energy, environmental issues and cost analysis.

Mr. S Dattatraya Koushik was born in India. He received his B.Tech degree in Electrical and Electronice Engineering from JNTU Kakinada and Mtech in Power Electronics from VIT University, India. Presently, he is serving as Assistant Professor in the Department of Power Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India. His main research interests are power electronics and renewable energy.