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Abstract: Let G be a finite, connected, undirected graph without 

loops or multiple edges. If  G1, G2 , . . . ,Gn   are connected edge – 
disjoint subgraphs of G with E(G) = E(G1)  E(G2)   . . .   
E(Gn), then { G1, G2 , . . . , Gn} is said to be a decomposition of G.  
The concept of Arithmetic Odd Decomposition [AOD] was 
introduced by E. Ebin Raja Merly and N. Gnanadhas .                 A  
decomposition  {G1, G2, . . . , Gn }  G is said to be  Arithmetic 
Decomposition if each Gi is connected and | E(Gi)| = a+ (i – 1) d ,  
for 1   i    n  and a, d  ℤ . When a =1 and  d = 2, we call the 
Arithmetic Decomposition as Arithmetic Odd Decomposition .  A 
decomposition { G1, G3, . . . , G2n-1} of  G is said to be AOD if      | E 
(Gi ) | = i ,    i = 1, 3, . . . , 2n-1.  In this paper, we introduce a new 
concept called Double Arithmetic Odd Decomposition [DAOD].  A 
graph G  is  said to have Double Arithmetic Odd Decomposition 
[DAOD]  if  G  can be decomposed into 2k subgraphs { 2G1, 2G3 , . 
. . , 2G2k-1 } such that each Gi is connected and  | E (Gi ) | = i ,    i 
= 1, 3, . . . , 2k-1. Also we investigate DAOD of some complete 
4-partite graphs such as  K2,2,2,m  , K2,4,4,m  and K1,2,4,m . 

 
Keywords: Decomposition of graph, Arithmetic 

Decomposition, Arithmetic Odd Decomposition [AOD], Double 
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I. INTRODUCTION 

Let  G = (V,E)  be a simple , connected graph with  p  
vertices and q edges. If G1, G2, . . . , Gn are connected edge – 
disjoint  subgraphs of G  with E(G) = E(G1)  E(G2)  . . .   
E(Gn) , then {G1, G2 , . . . , Gn} is said to be a Decomposition 
of G. The concept of Arithmetic ODD Decomposition [AOD] 
was introduced by E. Ebin Raja Merly and N. Gnanadhas [1].  
In this paper, we introduce a new concept called  Double 
Arithmetic Odd  Decomposition [DAOD].   Terms not 
defined here are used in the sense of Harary [3]. 
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II. PRELIMINARIES 

Definition 2.1.  Let G = (V, E)  be a simple graph of order p  
and size q. If  G1, G2 , . . . , Gn are  edge - disjoint subgraphs  of  
G such that  E(G) = E(G1)  E(G2)  . . .   E(Gn) , then { G1,  
G2, . . .  , Gn } is said to be a Decomposition of  G. 
 
Definition 2.2.  A  decomposition  {G1, G2, . . . , Gn } of a  
connected graph G is said to be a Linear Decomposition or  
Arithmetic Decomposition if each Gi is connected and    E(Gi)| 

= a+ (i – 1) d ,  for 1   i    n  and a, d  ℤ . Clearly         

q = 
n
2

[ 2a + (n-1) d ]. 

Definition 2.3.  When a = 1 and d =1, the size of  G is                 

q = 
n(n +1)

2
. When a =1 and d = 2, the size of  G  is    q = n2.  

Hence the number of edges of G is a perfect square. Since the  
number of edges of  G is a perfect square, q is the sum of  first  
n odd numbers 1, 3, 5, . . . ,(2n -1). Thus we call the 
Arithmetic Decomposition with   a = 1   and    d = 2   as  
Arithmetic Odd Decomposition [AOD]. Since the number of  
edges of each subgraph of G is odd, we denote the  AOD  as  
{G1, G3, . . .,G2n-1}.  
Theorem 2.4.   Any connected graph G admits AOD {G1,      
G3 , . . . , G2n-1} where Gi = ( Vi , Ei ) and  | E(Gi ) | = i , for             
i = 1, 3, . . . , 2n-1  if and only if  q = n2 , for every n  ℤ+  . 
 
Definition 2.5. A Complete 4-Partite Graph is a 4-partite  
graph whose vertices are decomposed in to 4 disjoint sets  
such that no two vertices with in the same set are adjacent but  
every pair of vertices in the 4 sets are adjacent. A complete  
4-partite graph is denoted as Ka,b,c,d where a, b, c and d are 4  
disjoint set of vertices of the graph. 

III. DOUBLE ARITHMETIC ODD 

DECOMPOSITION [DAOD] OF GRAPHS 

Definition 3.1.  A  graph G is said to have Double  Arithmetic  
Odd  Decomposition [DAOD] if G can be decomposed in to  
2k subgraphs {2G1, 2G3, . . ., 2G2k-1} such that  each Gi is  
connected and  | E(Gi) | = i ,   i = 1, 3, 5, . . . , 2k-1. Clearly q 
= 2k2. We denote DAOD as                     
{ 2G1, 2G3, . . . , 2G2k-1 }. 

Example 3.2. Consider the following Tietze’s graph G. 
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                              Tietze’s graph G 

Tietze’s  graph G admits DAOD. The DAOD of G is as 

follows. 

                   
 

             

                  

IV. DAOD OF  K2,2,2,M 

Theorem 4.2. For any integer m, K2,2,2,m   has a DAOD 
{2G1,2G3, . . ., 2G2k-1} [2k- decompositions] if and only if 
there exists an integer k satisfying the following properties.   

1. k = 3r , r  1 and rZ  
2. k2 =  6 + 3m 
Proof . Let G = K2,2,2 m. Assume that G  has a DAOD {2G1, 
2G3, . . ., 2G2k-1}. By the definition of DAOD, q = 2k2, where 
k denotes the total number of decompositions. Clearly, there 
will be 2 copies of  k  decompositions . By the definition of 
K2,2,2 m ,  q = 12 + 6m. Hence 2k2 = 12+6m. Thus  k2 = 6 + 3m. 
This is possible only when k is a  multiple of 3. Suppose            
k = 3r, r  1 and r Z. Then (3r)2 = 6 + 3m. This implies            
m = 3r2

2, an integer. Hence k = 3r, r  1 and r Z . 
Conversely, suppose k = 3r, r  1 and r Z and  k2 = 6 + 3m. 

Let G = K2,2,2 m.  By the definition of G, q = 12 + 6m = 2k2 . 
Since q = 2k2 , G can be decomposed in to { 2G1, 2G3, . . . , 
2G2k-1}. Hence G admits DAOD.  
Illustration 4.2. As an illustration, let us decompose K2,2,2,1. 

              
 
Let G = K2,2,2,1. G admits DAOD { 2G1, 2G3, . . ., 2G5}as 
follows. 

                 
 

                   
 

                     
Table 4.3. List of first 10 K2,2,2,m ’s that admits DAOD and 

their decompositions are listed below. 

m DAOD 

1 2G1, 2G3, 2G5 

10 2G1, 2G3, . . . ,  2G11 

25 2G1, 2G3, . . . ,   2G17 

46 2G1, 2G3, . . . ,   2G23 

73 2G1, 2G3, . . . ,   2G29 

106 2G1, 2G3, . . . ,   2G35 

145 2G1, 2G3, . . . ,   2G41 

190 2G1, 2G3, . . . ,   2G47 

241 2G1, 2G3, . . . ,   2G53 

298 2G1, 2G3, . . . ,   2G59 
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V. DAOD  OF  K2,4,4,M  

Lemma 5.1 .  Let k2 = 16 + 5m. If k6  0(mod 10) ,                 
then 2k2  can be decomposed in to {2G1, 2G3, . . .,   2G2k-1}.  
Proof . We have k 6  0 (mod 10). Then k- 6 = 10r,              
r = 0,1, 2, … . Hence k = 6 + 10r. Proof is by induction    
on r. When  r = 0 , k = 6. Then 2k2 = 72 can be     
decomposed in to {2G1, 2G3, . . . , 2G11}. Hence the result   
is true for r = 0.  
Assume that the result is true for r – 1. Then           
k = 10(r1) + 6 = 10r 4. Now, 2k2 = 2[10r 4]2 =             
200r2 – 160r + 32. Thus 2k2 can be decomposed in to {2G1, . . 
. , 2G2r-3}.  
  Now to prove that the result is true for r. Let      k = 10r +6. 
Then 2k2 = 200r2 + 240r + 72 we have to prove that 200r2 + 
240 r + 72 can be decomposed in to {2G1, 2G3, . . ., 2G2r-1}. 
Define 2k2 =   2[10r 4]2  U      {20r – 7 , 20r – 5 , . . . , 20r + 
11 }. Then by  the induction hypothesis , we get 200r2 – 160r 
+ 32+ 2[20r -7 + 20r -5 + . . . + 20r + 9+20r +11] can be 
decomposed in to {2G1, 2G2r-3, . . . , 2G2r-1}. That is   200r2 – 
160r + 32 + 2[200r + 20] can be decomposed in to {2G1, . . . , 
2G2r-1}. Thus 200r2 + 240 r + 72 can be decomposed in to { 
2G1, 2G3, . . . , 2G2r-1}. Hence by induction hypothesis, if                    
k 6  0(mod 10), then 2k2 can be decomposed in to           { 
2G1, . . . , 2G2k-1}. This completes the proof. 
      Lemma 5.2.  Let k2 = 16+5m. If k9  0(mod 10) , then 
2k2 can be decomposed in to {2G1, 2G3, . . ., 2G2k-1}.  
       Proof . We have k 9  0(mod 10). Then k- 9 = 10r, r = 0, 
1, 2, . . . . Hence  k = 9 +10r. Proof is by induction on r. When 
r = 0, k = 9. Then 2k2 = 162 can be decomposed into {2G1, . . 
. , 2G17 }. Hence the  result is true for r = 0.  
                      Assume that the result is true for r-1. Then           
k = 10(r-1) + 9 = 10r 1. Now 2k2  =  2[10r 1]2   =         200r2 

– 40r + 2. Thus 2k2 can be decomposed in to {2G1, 2G3, . . . , 
2G2r-3 }.  
                        Now, to prove that the result is true for r. Let   
k = 9 + 10r. Then 2k2 = 200r2 + 360r + 162. We have to prove 
that 200r2 + 360r +162 can be decomposed in to {2G1, 2G3, . 
. . , 2G2r-1}. Define 2k2 =   2[10r 1]2  U     {20r – 1 , 20r + 1 , 
. . . , 20r + 17 }. Then by  the induction hypothesis , we get   
200r2 

– 40 r + 2 + 2 [ 20r -1 +            20r + 1 + . . .  + 20r + 17] 
can be decomposed in to {2G1, . .  . , 2G2r-1}.That is 200r2 – 40 
r + 2 + 2 [200r + 80] can be decomposed in to {2G1, 2G3, . . . 
, 2G2r-1}. Thus           200r2 + 360r +162 can be decomposed in 
to {2G1,        2G3, . . . , 2G2r-1}. Hence by induction hypothesis 
, if                              k – 9  0(mod 10), then 2k2 can be 
decomposed in to {2G1, 2G3, . . . , 2G2k-1}.This completes the 
proof. 
Theorem 5.3. For any integer m, K2,4,4,m has a DAOD {2G1, 
2G3, . . . , 2G2k-1)} [2k – decompositions] if and only if there 
exists an integer k satisfying the following properties. 
        1.  k = 6 + 10r   or  k = 9 + 10r, r = 0,1,2, . . . 
2. k2 = 16 + 5 m 
Proof . Let G = K2,4,4,m. Assume that G admits DAOD. By the 
definition of DAOD, q = 2k2, where k denotes the total 
number of decompositions. Clearly, there will be 2 copies of  
k  decompositions .  By the definition of G,        q = 32+10 m. 
Hence 2k2 = 32 + 10 m. Thus k2 = 16 + 5m. Hence m = 

2
k -16

5
.    Since m is an integer, either                k – 6  0(mod 

10) or k -9  0(mod 10). Hence k = 6 + 10r or   9 + 10 r, r =0, 
1, 2, . . . 
Conversely, assume that k = 6 + 10r  or  k = 9 + 10r , r = 0, 1, 
2, . . . and k2 = 16 + 5 m. Let G = K2,4,4,m.  By Lemma  5.1 and 
5.2, 2k2 can be decomposed in to       {2G1, , . . . , 2G2k-1 }. 
Thus G admits DAOD. 
    Illustration 5.4. As an illustration, let us decompose     
     K2,4,4,4. 

 

K2,4,4,4 
Let G = K2,4,4,4 . G admits DAOD { 2G1, 2G3, 2G5, 2G7, 2G9, 
2G11} as follows 
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Table 5.5.  List of first 10 K2,4,4,m ’s which accepts DAOD 

and their decompositions are given below. 
m DAOD 
4 2G1, 2G3, . . . , 2G11 

13 2G1, 2G3, . . . ,  2G17 

48 2G1, 2G3, . . . ,  2G31 

69 2G1, 2G3, . . . ,  2G37 

132 2G1, 2G3, . . . ,  2G51 

165 2G1, 2G3, . . . ,  2G57 

256 2G1, 2G3, . . . ,  2G71 

301 2G1, 2G3, . . . ,  2G77 

420 2G1, 2G3, . . . ,  2G91 

477 2G1, 2G3, . . . ,  2G97 

VI. DAOD  OF   K1,2,4,M  

       Theorem 6.1. For an even integer m, K1,2,4,m  has a 
DAOD {2G1, 2G3, . . . , 2G2k-1} [2k- decompositions]       if 
and only if there exists an integer k satisfying the following 
properties. 
1.  k = 7r , r  1 and rZ 
2. 2k2 =  14 + 7m 
       Proof . Let G = K1,2,4,m. Assume that G  admits  DAOD. 
By the definition of DAOD, q = 2k2, where k denotes the total 
number of decompositions. Clearly, there will be two copies 
of  k  decompositions . By the definition of  G,  q = 14 + 7m. 
Hence 2k2 = 14 +7.  Clearly 14 + 7m is even. Hence m is even. 

Also  m = 

2
2k -14

7
. Since m is an even integer, 2k2 

– 14 

should be a multiple of 7. This is possible only when k = 7r, r 
 1 and r  Z. Suppose            k = 7r. Then 2(49r2) = 14 + 7m 
and hence m = 14r2 - 2, an integer . Thus k satisfies  the two 
properties.  
       Conversely, assume that  k = 7r, r  1 and r  Z and 2k2 
= 14 + 7m. Let G = K1,2,4,m . Then  q = 14 + 7 m = 2k2. Since q 
= 2k2 , G can be decomposed in to {2G1, 2G3, . . . ,   2G2k-1}. 
Hence G admits DAOD.  
Illustration 6.2. As an illustration , let us decompose  K1,2,4,12                   
                   

 
K1,2,4,12 

Let G = K1,2,4,12  . G admits DAOD and its  decompositions are  
given below 
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Table 6.3. List of first 10 K1,2,4,m ‘s which accepts DAOD 

and their decompositions are given below. 

m DAOD 

12 2G1, 2G3, . . . , 2G13 

54 2G1, 2G3, . . . , 2G27 

124 2G1, 2G3, . . . , 2G41 

222 2G1, 2G3, . . . , 2G55 

348 2G1, 2G3, . . . , 2G69 

502 2G1, 2G3, . . . , 2G83 

684 2G1, 2G3, . . . , 2G97 

894 2G1, 2G3, . . . , 2G111 

1132 2G1, 2G3, . . . , 2G125 

1398 2G1, 2G3, . . . ,2G139 
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VII. CONCLUSION 

Thus we can extend this Double Arithmetic Odd 
Decomposition  for various 4-partite graphs. This 
decomposition technique plays a major role in the area of 
decomposition. 
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