

Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs

V. G. Smilin Shali, S. Asha

Abstract: Let G be a finite, connected, undirected graph without loops or multiple edges. If G_1, G_2, \ldots, G_n are connected edge – disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup$ $E(G_n)$, then $\{G_1, G_2, \ldots, G_n\}$ is said to be a decomposition of G. The concept of Arithmetic Odd Decomposition [AOD] was introduced by E. Ebin Raja Merly and N. Gnanadhas. A decomposition $\{G_1, G_2, \ldots, G_n\}$ G is said to be Arithmetic Decomposition if each G_i is connected and $|E(G_i)| = a + (i - 1) d$, for $1 \le i \le n$ and $a, d \in \mathbb{Z}$. When a = 1 and d = 2, we call the Arithmetic Decomposition as Arithmetic Odd Decomposition . A decomposition $\{G_1, G_3, \ldots, G_{2n-1}\}$ of G is said to be AOD if |E| $(G_i) \mid = i, \forall i = 1, 3, \dots, 2n-1$. In this paper, we introduce a new concept called Double Arithmetic Odd Decomposition [DAOD]. A graph G is said to have Double Arithmetic Odd Decomposition [DAOD] if G can be decomposed into 2k subgraphs { $2G_1, 2G_3, .$..., $2G_{2k-1}$ such that each G_i is connected and $|E(G_i)| = i$, $\forall i$ = 1, 3, ..., 2k-1. Also we investigate DAOD of some complete 4-partite graphs such as $K_{2,2,2,m}$, $K_{2,4,4,m}$ and $K_{1,2,4,m}$.

Keywords: Decomposition of graph, Arithmetic Decomposition, Arithmetic Odd Decomposition [AOD], Double Arithmetic Odd Decomposition [DAOD].

I. INTRODUCTION

Let G = (V,E) be a simple , connected graph with p vertices and q edges. If G_1, G_2, \ldots, G_n are connected edge – disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup E(G_n)$, then $\{G_1, G_2, \ldots, G_n\}$ is said to be a Decomposition of G. The concept of Arithmetic ODD Decomposition [AOD] was introduced by E. Ebin Raja Merly and N. Gnanadhas [1]. In this paper, we introduce a new concept called Double Arithmetic Odd Decomposition [DAOD]. Terms not defined here are used in the sense of Harary [3].

Revised Manuscript Received on December 30, 2019. * Correspondence Author

V. G. SMILIN SHALI*, Research Scholar, Reg No. 12609, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District-629165, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India. Email: smilinshali92@gmail.com

Dr.S. ASHA, Assistant Professor, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District-629165, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India. Email: ashanugraha@yahoo.co.in

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an <u>open access</u> article under the CC-BY-NC-ND license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

II. PRELIMINARIES

Definition 2.1. Let G = (V, E) be a simple graph of order p and size q. If G_1, G_2, \ldots, G_n are edge - disjoint subgraphs of G such that $E(G) = E(G_1) \cup E(G_2) \cup \ldots \cup E(G_n)$, then { G_1 , G_2 , ..., G_n } is said to be a Decomposition of G.

Definition 2.2. A decomposition $\{G_1, G_2, \ldots, G_n\}$ of a connected graph G is said to be a Linear Decomposition or Arithmetic Decomposition if each G_i is connected and $E(G_i)|$

= a+(i-1) d, for $1 \le i \le n$ and $a, d \in \mathbb{Z}$. Clearly

$$q = \frac{n}{2} [2a + (n-1)d]$$

Definition 2.3. When a = 1 and d = 1, the size of G is p(n + 1)

$$q = \frac{n(n+1)}{2}$$
. When a =1 and d = 2, the size of G is $q = n^2$.

Hence the number of edges of G is a perfect square. Since the number of edges of G is a perfect square, q is the sum of first n odd numbers 1, 3, 5, . . . ,(2n -1). Thus we call the Arithmetic Decomposition with a = 1 and d = 2 as Arithmetic Odd Decomposition [AOD]. Since the number of edges of each subgraph of G is odd, we denote the AOD as $\{G_1, G_3, \ldots, G_{2n-1}\}$.

Theorem 2.4. Any connected graph G admits AOD {G₁, G₃, ..., G_{2n-1}} where G_i = (V_i, E_i) and $|E(G_i)| = i$, for i = 1, 3, ..., 2n-1 if and only if $q = n^2$, for every $n \in \mathbb{Z}^+$.

Definition 2.5. A Complete 4-Partite Graph is a 4-partite graph whose vertices are decomposed in to 4 disjoint sets such that no two vertices with in the same set are adjacent but every pair of vertices in the 4 sets are adjacent. A complete 4-partite graph is denoted as $K_{a,b,c,d}$ where a, b, c and d are 4 disjoint set of vertices of the graph.

III. DOUBLE ARITHMETIC ODD DECOMPOSITION [DAOD] OF GRAPHS

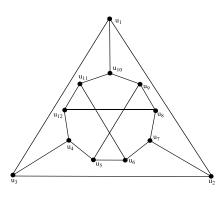
Definition 3.1. A graph G is said to have Double Arithmetic Odd Decomposition [DAOD] if G can be decomposed in to 2k subgraphs $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$ such that each G_i is connected and $|E(G_i)| = i, \forall i = 1, 3, 5, \ldots, 2k-1$. Clearly q = $2k^2$. We denote DAOD as $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$.

Example 3.2. Consider the following Tietze's graph G.

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

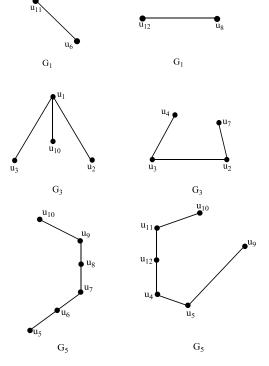
Retrieval Number: B7814129219/2019©BEIESP DOI: 10.35940/ijitee.B7814.129219 Journal Website: <u>www.ijitee.org</u>

Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs



Tietze's graph G

Tietze's graph G admits DAOD. The DAOD of G is as follows.



IV. DAOD OF K2,2,2,M

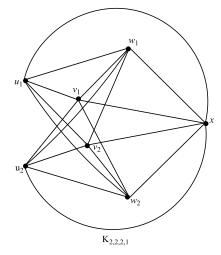
Theorem 4.2. For any integer m, $K_{2,2,2,m}$ has a DAOD $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$ [2k- decompositions] if and only if there exists an integer k satisfying the following properties.

1. k=3r , $r\geq 1$ and $r{\in}Z$ 2. $k^2=~6+3m$

Proof. Let $G = K_{2,2,2 \text{ m}}$. Assume that G has a DAOD $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$. By the definition of DAOD, $q = 2k^2$, where k denotes the total number of decompositions. Clearly, there will be 2 copies of k decompositions. By the definition of $K_{2,2,2 \text{ m}}$, q = 12 + 6m. Hence $2k^2 = 12 + 6m$. Thus $k^2 = 6 + 3m$. This is possible only when k is a multiple of 3. Suppose k = 3r, $r \ge 1$ and $r \in Z$. Then $(3r)^2 = 6 + 3m$. This implies $m = 3r^2 - 2$, an integer. Hence k = 3r, $r \ge 1$ and $r \in Z$.

Conversely, suppose $k=3r, r\geq 1$ and $r\in Z$ and $k^2=6+3m.$ Let $G=K_{2,2,2\ m}.$ By the definition of $G,\ q=12+6m=2k^2$. Since $q=2k^2$, G can be decomposed in to { $2G_1,\ 2G_3,\ \ldots,\ 2G_{2k-1}$ }. Hence G admits DAOD.

Illustration 4.2. As an illustration, let us decompose K_{2,2,2,1}.



Let $G=K_{2,2,2,1}.$ G admits DAOD { $2G_1,\ 2G_3,\ \ldots,\ 2G_5\}$ as follows.

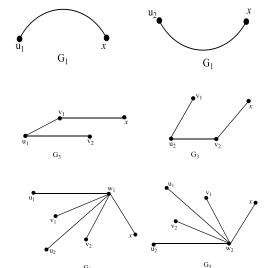


Table 4.3. List of first 10 K_{2,2,2,m}'s that admits DAOD and their decompositions are listed below.

m	DAOD
1	2G ₁ , 2G ₃ , 2G ₅
10	$2G_{1,} 2G_{3,} \ldots, 2G_{11}$
25	$2G_{1,} 2G_{3,} \ldots, 2G_{17}$
46	$2G_{1,} 2G_{3,} \ldots, 2G_{23}$
73	$2G_{1,} 2G_{3,} \ldots, 2G_{29}$
106	$2G_{1,} 2G_{3,} \ldots, 2G_{35}$
145	$2G_{1,} 2G_{3,} \ldots, 2G_{41}$
190	$2G_{1,} 2G_{3,} \ldots, 2G_{47}$
241	$2G_{1,} 2G_{3,} \ldots, 2G_{53}$
298	$2G_{1,} 2G_{3,} \ldots, 2G_{59}$

Retrieval Number: B7814129219/2019©BEIESP DOI: 10.35940/ijitee.B7814.129219 Journal Website: <u>www.ijitee.org</u>

3903

V. DAOD OF K2,4,4,M

Lemma 5.1. Let $k^2 = 16 + 5m$. If $k-6 \equiv 0 \pmod{10}$, then $2k^2$ can be decomposed in to $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$. **Proof**. We have $k - 6 \equiv 0 \pmod{10}$. Then $k - 6 \equiv 10r$, $r = 0, 1, 2, \dots$ Hence k = 6 + 10r. Proof is by induction on r. When r = 0, k = 6. Then $2k^2 = 72$ can be decomposed in to $\{2G_1, 2G_3, \ldots, 2G_{11}\}$. Hence the result is true for r = 0.

Assume that the result is true for r - 1. Then

k = 10(r-1) + 6 = 10r - 4. Now, $2k^2 = 2[10r - 4]^2 =$

 $200r^2 - 160r + 32$. Thus $2k^2$ can be decomposed in to $\{2G_1, \ldots, 2G_n\}$ $., 2G_{2r-3}$.

Now to prove that the result is true for r. Let k = 10r + 6. Then $2k^2 = 200r^2 + 240r + 72$ we have to prove that $200r^2 + 240r + 72$ 240 r + 72 can be decomposed in to $\{2G_1, 2G_3, \ldots, 2G_{2r-1}\}$. Define $2k^2 = 2[10r - 4]^2 U = \{20r - 7, 20r - 5, ..., 20r +$ 11 }. Then by the induction hypothesis , we get $200r^2 - 160r$ + 32 + 2[20r - 7 + 20r - 5 + ... + 20r + 9 + 20r + 11] can be decomposed in to $\{2G_1, 2G_{2r-3}, ..., 2G_{2r-1}\}$. That is $200r^2 -$ 160r + 32 + 2[200r + 20] can be decomposed in to $\{2G_1, \ldots, M_n\}$ $2G_{2r-1}$. Thus $200r^2 + 240 r + 72$ can be decomposed in to { $2G_1, 2G_3, \ldots, 2G_{2r-1}$. Hence by induction hypothesis, if $k-6 \equiv 0 \pmod{10}$, then $2k^2$ can be decomposed in to { $2G_1, \ldots, 2G_{2k-1}$. This completes the proof.

Lemma 5.2. Let $k^2 = 16+5m$. If $k-9 \equiv 0 \pmod{10}$, then $2k^2$ can be decomposed in to $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$.

Proof. We have $k-9 \equiv 0 \pmod{10}$. Then $k-9 \equiv 10r$, r = 0, 1, 2, Hence k = 9 + 10r. Proof is by induction on r. When r = 0, k = 9. Then $2k^2 = 162$ can be decomposed into $\{2G_1, \dots, K_n\}$., $2G_{17}$ }. Hence the result is true for r = 0.

Assume that the result is true for r-1. Then k = 10(r-1) + 9 = 10r - 1. Now $2k^2 = 2[10r - 1]^2 =$ $200r^{2}$ -40r + 2. Thus $2k^2$ can be decomposed in to $\{2G_1, 2G_3, \ldots,$ $2G_{2r-3}$ }.

Now, to prove that the result is true for r. Let k = 9 + 10r. Then $2k^2 = 200r^2 + 360r + 162$. We have to prove that $200r^2 + 360r + 162$ can be decomposed in to $\{2G_1, 2G_3, ...\}$..., $2G_{2r-1}$ }. Define $2k^2 = 2[10r - 1]^2 U = \{20r - 1, 20r + 1,$ \ldots , 20r + 17 }. Then by the induction hypothesis , we get $200r^2 - 40r + 2 + 2[20r - 1 + 2]$ $20r + 1 + \ldots + 20r + 17$] can be decomposed in to $\{2G_1, \ldots, 2G_{2r-1}\}$. That is $200r^2 - 40$ r + 2 + 2 [200r + 80] can be decomposed in to $\{2G_1, 2G_3, \ldots, 2G_n\}$, 2G_{2r-1}}. Thus $200r^2 + 360r + 162$ can be decomposed in $2G_3, \ldots, 2G_{2r-1}$. Hence by induction hypothesis to {2G₁, , if $k - 9 \equiv 0 \pmod{10}$, then $2k^2$ can be decomposed in to $\{2G_1,2G_3,\ldots,2G_{2k\text{-}1}\}.$ This completes the proof.

Theorem 5.3. For any integer m, $K_{2,4,4,m}$ has a DAOD {2G₁, $2G_3, \ldots, 2G_{2k-1}$ [2k – decompositions] if and only if there exists an integer k satisfying the following properties.

1. k = 6 + 10r or k = 9 + 10r, r = 0, 1, 2, ...

2. $k^2 = 16 + 5 m$

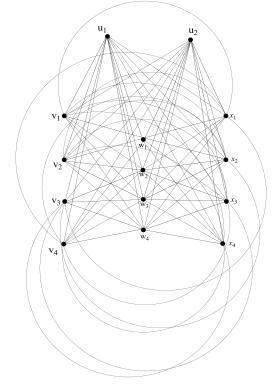
Proof. Let $G = K_{2,4,4,m}$. Assume that G admits DAOD. By the definition of DAOD, $q = 2k^2$, where k denotes the total number of decompositions. Clearly, there will be 2 copies of k decompositions. By the definition of G, q = 32 + 10 m.Hence $2k^2 = 32 + 10$ m. Thus $k^2 = 16 + 5$ m. Hence m =

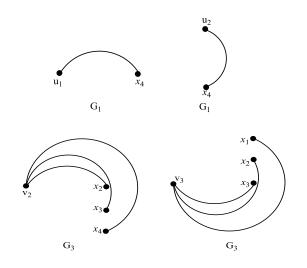
 $\frac{k^2 - 16}{5}$. Since m is an integer, either $k - 6 \equiv 0 \pmod{100}$

10) or k $-9 \equiv 0 \pmod{10}$. Hence k = 6 + 10r or 9 + 10 r, r = 0, 1, 2, . . .

Conversely, assume that k = 6 + 10r or k = 9 + 10r, r = 0, 1, 2, . . . and $k^2 = 16 + 5$ m. Let $G = K_{2.4,4,m}$. By Lemma 5.1 and 5.2, $2k^2$ can be decomposed in to { $2G_1, \ldots, 2G_{2k-1}$ }. Thus G admits DAOD.

Illustration 5.4. As an illustration, let us decompose $K_{2,4,4,4}$





Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: B7814129219/2019©BEIESP DOI: 10.35940/ijitee.B7814.129219 Journal Website: www.ijitee.org



Table 5.5. List of first 10 $K_{2,4,4,m}$'s which accepts DAOD and their decompositions are given below.

nu men ucco	mpositions are given below
m	DAOD
4	$2G_{1,} 2G_{3,} \ldots, 2G_{11}$
13	$2G_{1,} 2G_{3,} \ldots, 2G_{17}$
48	$2G_{1,} 2G_{3,} \ldots, 2G_{31}$
69	$2G_{1,} 2G_{3,} \ldots, 2G_{37}$
132	$2G_{1,} 2G_{3,} \ldots, 2G_{51}$
165	$2G_{1,} 2G_{3,} \ldots, 2G_{57}$
256	$2G_{1,} 2G_{3,} \ldots, 2G_{71}$
301	$2G_{1,} 2G_{3,} \ldots, 2G_{77}$
420	$2G_{1,} 2G_{3,} \ldots, 2G_{91}$
477	$2G_{1,}2G_{3,}\ldots, 2G_{97}$

VI. DAOD OF K1,2,4,M

Theorem 6.1. For an even integer m, $K_{1,2,4,m}$ has a DAOD $\{2G_1, 2G_3, \ldots, 2G_{2k-1}\}$ [2k- decompositions] if and only if there exists an integer k satisfying the following properties.

1. k = 7r, $r \ge 1$ and $r \in Z$

2. $2k^2 = 14 + 7m$

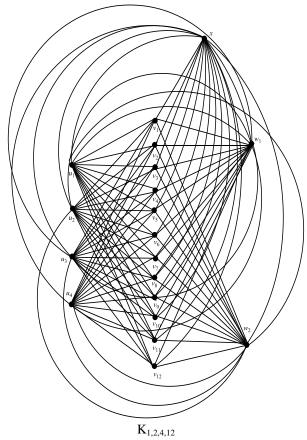
Proof. Let $G = K_{1,2,4,m}$. Assume that G admits DAOD. By the definition of DAOD, $q = 2k^2$, where k denotes the total number of decompositions. Clearly, there will be two copies of k decompositions. By the definition of G, q = 14 + 7m. Hence $2k^2 = 14 + 7$. Clearly 14 + 7m is even. Hence m is even.

Also
$$m = \frac{2k^2 - 14}{7}$$
. Since m is an even integer, $2k^2 - 14$

should be a multiple of 7. This is possible only when k = 7r, r ≥ 1 and $r \in Z$. Suppose k = 7r. Then $2(49r^2) = 14 + 7m$ and hence $m = 14r^2 - 2$, an integer. Thus k satisfies the two properties.

Conversely, assume that $k = 7r, r \ge 1$ and $r \in Z$ and $2k^2$ = 14 + 7m. Let G = K_{1,2,4,m}. Then q = 14 + 7 m = 2k². Since q $=2k^2$, G can be decomposed in to $\{2G_1,\,2G_3,\,\ldots\,,\ 2G_{2k\text{-}1}\}.$ Hence G admits DAOD.

Illustration 6.2. As an illustration , let us decompose $K_{1,2,4,12}$



Let $G = K_{1,2,4,12}$. G admits DAOD and its decompositions are given below

Retrieval Number: B7814129219/2019©BEIESP DOI: 10.35940/ijitee.B7814.129219 Journal Website: www.ijitee.org

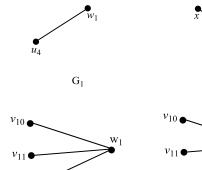
Published By:

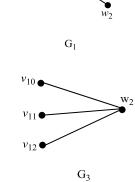
& Sciences Publication

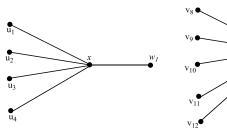
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075 (Online), Volume-9 Issue-2, December 2019

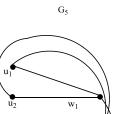
 v_{12}

 G_3



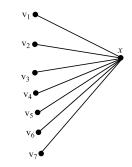






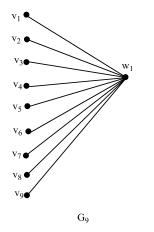
ũ3

 u_4

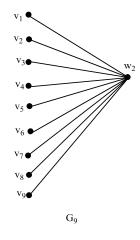


 G_5

 G_7



G₇



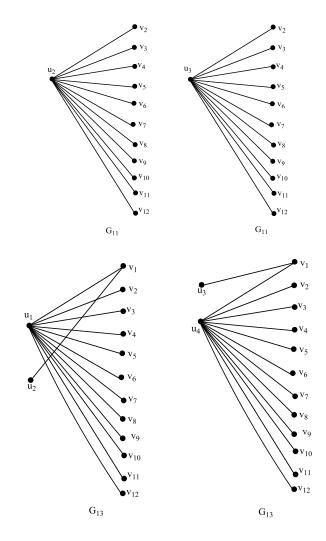


 Table 6.3. List of first 10 K_{152,4,m}'s which accepts DAOD and their decompositions are given below.

m	DAOD
12	$2G_{1,}2G_{3,}\ldots,2G_{13}$
54	$2G_{1,} 2G_{3,} \dots, 2G_{27}$
124	$2G_{1,}2G_{3,}\ldots,2G_{41}$
222	$2G_{1,} 2G_{3,} \dots, 2G_{55}$
348	$2G_{1,} 2G_{3,} \dots, 2G_{69}$
502	$2G_{1,} 2G_{3,} \dots, 2G_{83}$
684	$2G_{1,} 2G_{3,} \dots, 2G_{97}$
894	$2G_{1,}2G_{3,}\ldots,2G_{111}$
1132	$2G_{1,}2G_{3,}\ldots,2G_{125}$
1398	$2G_{1,}2G_{3,}\ldots,2G_{139}$

Retrieval Number: B7814129219/2019©BEIESP DOI: 10.35940/ijitee.B7814.129219 Journal Website: <u>www.ijitee.org</u>

3906

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

VII. CONCLUSION

Thus we can extend this Double Arithmetic Odd Decomposition for various 4-partite graphs. This decomposition technique plays a major role in the area of decomposition.

REFERENCES

- 1. E. Ebin Raja Merly and N. Gnanadhas, "Arithmetic Odd Decomposition of Spider Tree", *Asian Journal of Current Engineering and Maths*, March – April (2013), 99 to 101.
- E. Ebin Raja Merly and D. Subitha , (2016), "Geometric Decomposition of Complete Tripartite Graphs", *Indian Journal of Research Foundation*, 5, 23-26.
- Frank Harary, (1972), Graph Theory, Addison Wesley Publishing Company.
- 4. N. Gnanadhas and J. Paulraj Joseph ,(2000), "Continuous Monotonic Decomposition of Graphs", *International Journal of Management and Systems*, Vol. 16, No.3, 333-344.
- 5. Juraj Bosak, (1990), *Decomposition of Graphs*, Kluwer Academic Press, Dordrecht.
- 6. V.G. Smilin Shali and S. Asha, (2019), "Arithmetic
- Odd Decomposition [AOD] of Some Class of Graphs", International Journal of Applied Engineering Research, Vol.14, No.8, 2019 (Special Issue), 63-67.

AUTHORS PROFILE

V.G. Smilin Shali is pursuing her Ph.D degree in Mathematics (Reg No.12609) under the guidance of Dr.S.Asha. Her research area of interest is Graph Decomposition.

Dr. S. Asha is working as an Assistant Professor of Mathematics in Nesamony Memorial Christian College, Marthandam. Her current field of interest include Graph Theory and its related topics.

