

Simultaneous Scheduling of Machines and AGVs in FMS through Simulated Annealing Algorithm

M. Nageswara Rao, Vara Kumari S., Praneeth I., Gaya Prasad K., D. Venkata Reddy E.Vineeth, D. Maheshwar Reddy

Abstract: High amount of flexibility and quick response times have become essential features of modern manufacturing systems where customers are demanding a variety of products with reduced product life cycles. Flexible manufacturing system (FMS) is the right choice to achieve these challenging tasks. The performance of FMS is dependent on the selection of scheduling policy of the manufacturing system. In Traditional scheduling problems machines are as considered alone. But material handling equipment's are also valuable resources in FMS. The scheduling of AGVs is needed to be optimized and harmonized with machine operations. Scheduling in FMS is a well-known NP-hard problem due to considerations of material handling and machine scheduling. Many researchers addressed machine and AGVs individually. In this work an attempt is made to schedule both the machines and AGVs simultaneously. For solving these problems- a new metaheuristic Simulated Annealing (SA) algorithm is proposed.

Keywords: FMS; Operational Completion Time (makespan); Metaheuristic algorithms; AGVs; NP-hard problems.

I. INTRODUCTION

A Flexible Manufacturing System (FMS) is a highly automated manufacturing system well suited for the simultaneous production of a wide variety of part types in low to mid volume quantities at a low cost while maintaining a high quality of the finished products. FMS executed number of benefits in terms of reducing cost- increased utilization of machine- condensed work-in -process levels- etc.

Revised Manuscript Received on February 28, 2020.

* Correspondence Author

Dr. M. Nageswara Rao*, Department of Mechanical Engineering, K L E F University, Guntur, AP, India Email: medikondu 1979@gmail.com

Varakumari S., Department of E C E, ,K L E F University, Guntur, AP, India Email: varakumari 3@gmail.com

Praneeth Inturi, Department of Mechanical Engineering, K L E F University, Guntur, AP, India. Email: praneethinturi 1999@gmail.com

Gaya Prasad K., Department of Mechanical Engineering, K L E F University, Guntur, AP, India. Email: gayakurmi52@gmail.com

D. Venkata Reddy, Department of Mechanical Engineering, K L E F University, Guntur, AP, India. Email: venkatareddyd412@gmail.com

E. Vineeth, Department of Mechanical Engineering, K L E F University, Guntur, AP, India. Email: vineethchowdary 98@gmail.com

D. Maheshwar Reddy, Department of Mechanical Engineering, K L E F University, Guntur, AP, India. Email: mahejyoush 123@gmail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

However- there are a number of problems faced during the life cycle of an FMS and these functions are classified into: design- planning- scheduling- and controlling.

In particular- the scheduling task and control problem during the manufacturing operation are of importance owing to the dynamic nature of the FMS in respect of flexible partstools- assignments. In FMS scheduling- decisions that need to be made include not only sequencing of jobs on machines but also the routing of the jobs through the system. Apart from the machines- other resources in the system like Automated Guided Vehicle (AGV) and Automated Storage/Retrieval System (AS/RS) must be considered The AGVs effectiveness depends on vehicle management system

II. LITERATURE REVIEW

In simultaneous scheduling- the real time as well as the off-line scheduling is considered. Bilge and Ulusoy [1] exploited the interactions between the machine and AGVs scheduling simultaneously. The material transfer between machines is done by several identical AGVs which are not allowed to return to the load/unload station after each delivery. Abdelmaguid et al.[2] suggested a hybrid GA for the problem of simultaneous scheduling of machines and AGVs in FMS with minimizing the makespan. The algorithm is applied to a set of 82 test problems- which was constructed by other researchers- and the comparison of the results indicates the superior performance with the developed coding. Reddy and Rao [3] studied the simultaneous scheduling problem with makespan- mean flow time and mean tardiness as an criterion. The proposed hybrid GA for FMS scheduling problems yielded better results when compared to other algorithms. Gnanavelbabu et al. [4] examined the scheduling of machines and AGVs simultaneously in FMS using differential evaluation with makespan minimization. The algorithm is tested by using test problems proposed by various researchers and the makespan obtained by the algorithm is compared with that obtained by other researchers are analyzed. Anandaraman et al. [5] presented a solution for the simultaneous scheduling problem by evolutionary approach in FMS with vehicles and robots with the objectives to minimize the makespan- mean flow time and mean tardiness. The scheduling optimization is carried out using metaheuristic algorithm. The algorithms are applied for test problems taken from the literature and the results obtained using the two algorithms are compared. Nouri et al.

Simultaneous Scheduling of Machines and AGVs in FMS through Simulated Annealing Algorithm

[6] introduced the clustered holonic multiagent model using metaheuristic for simultaneous scheduling of machines and transport robot in FMS. Computational results are presented using three sets of benchmark instances in the literature. New upper bounds are found- showing the effectiveness of the presented approach. Md Kamal et al.

[7] Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the classical

Job Shop Scheduling Problem (JSSP). Keeping in view this aspect- this article presents a comprehensive literature review of the FJSSPs solved using the GA. The survey is further extended by the inclusion of the hybrid GA (hGA). Nageswararao et al [8]

III. SIMULTANEOUS SCHEDULING PROBLEMS IN

A. Problem structure

Bilge and Ulusoy (1995) proposed a numerical example for simultaneous scheduling of machines and AGVs in FMS environment which includes four layouts- ten jobsets process times and travel time data as an input

B. Objective function

Operation completion time=Oij=Tij+Pij T_{ij}=Traveling time for jth operation and ith job P_{ii} =operation processing time

C. Optimization parameters considered:

Population Size = Double the no of operations Iterations completed = 1000

D. Vehicle scheduling methodology

Jobs are scheduled based on the operation sequence derived by the algorithms. The problem considered needs scheduling of material handling system along with that of machines. To obtain the makespan value for a given sequence of operations the following procedural steps are implemented. Step 1: To Consider the machine number (M.No) of the given sequence for the job.

Step 2: To Select the AGV

Step 3: To identify the vehicle previous location (VPL)previous operation machine number (POMN)- vehicle ready time (VRT) and previous operation completion time (POCT)

Step 4: To calculate vehicle empty trip time (VET) using VET= VRT+VPL to POMN.

Step 5: Finding out the maximum from POCT and VET.

Step 6: Obtaining the total travel time of vehicle (TT) using TT=VET+ POMN to M.No.

Step 7: To know the machine readiness time (MRT).

Step 8: To Identify the maximum of TT and MRT.

Step 9: Maximum time (from step 8) is added to process time to get the operational completion time.

Step 10: Repeated the steps from 2 to 9 for all other operations.

Step 11: To Identify the maximum operational completion time- which represents the possible completion time (makespan) of given job set.

IV. SIMULATED ANNEALING

Simulated Annealing (SA) was developed by Kirkpatrick (1983). The name and inspiration come

from annealing in metallurgy. The steps involved in SA are given below:

- 1. Consider the Job Set
- 2. Initializing the optimization parameters
- 3. Generate a random solution based on population size
- 4. Calculate its Make span (Operational Completion Time) for all random sequences (c_{old})
- 5. Generate a random neighboring solution
- 6. Calculate the new makespan for the neighboring solutions (c_{new})
- 7. Compare them:

If $c_{\text{new}} < c_{\text{old}}$: move to the new solution

If $c_{new} > c_{old}$: *maybe* move to the new solution based on

8. probability of acceptance

Probability of acceptance= $e^{cnew-coldT}$

where (cnew-cold) is the difference between the new makespan and the old one- T is the temperature- and e is 2.71828- that mathematical constant that pops up in all sorts of unexpected places.

9. Repeat steps 4-7 above until an acceptable solution is found or you reach some maximum number of iterations.

A. Algorithm to Optimal Scheduling Problem:

For implementation of SA- Job set 7 and Layout 3 are considered as an example

The SA is explained in the following steps for the job set 7:

Step 1: Considering the job set

Step 1. Considering the job set									
	Job set: 7								
Layout: 3 No of jobs: 8 No of operations: 19							s: 19		
Job 1	Job 2	Job 3	Job 4	Job 5	Job	6	Job 7	Job 8	
1 - 2	3 - 4	5 - 6	7 - 8	9 – 10	11 -12-	13	14 -15 -16	17 -18 -19	

In SA for the operation in a job set numbers are assigned

Step 2: Initializing the optimization parameters

Starting temperature Up to 1000°C, Final Temperature: up to $0^{0}C$

Temperature Decrement: $t = t \alpha$, Where t = final temperature, $\alpha = 0$ to 1

Iterations at each temperature: According to Lundy (1986) is to only do one iteration at each temperature, but to decrease the temperature *very* slowly. The formula they use is t = t/(1 + β t) Where β 0 to 1

Step 3: Generating the Population size (double the number of operations) randomly by using precedence relation i.e., operation of the same job set must be in increasing order but anywhere in the sequence.

These are presented in table 1 and the steps discussed in 3.4 are implemented to identify the maximum operational completion time (makespan) for each sequence.

For example initial temperature as 0°C and final temperature as 1000°C, temperature decrement is for the first iteration is (if α =0.85) =850, iterations at each temperature are(if β =0.65)=1.53 ~ 2

Table 1: Generated population size for the SA

Table 1: Generated population size for the SA								
S.No	Sequence	Makespa						
1	9- 5- 11- 14- 17- 7-3- 1- 12- 15- 10- 6- 4- 18- 2- 8- 16-19-13	110						
2	11-7-3-9-1-17-5-14-10-15-8-2-6-18-12-4- 16-19-13	112						
3	17- 7- 5- 9- 3- 1- 11- 14- 2- 4- 12- 8- 6- 10- 18- 15-19- 16- 13	116						
4	14-7-9-17-3-5-1-11-10-6-15-12-18-4-8-2- 19-13-16	116						
5	7-1-17-5-11-14-3-9-18-6-15-2-12-4-10-8- 16-19-13	116						
6	17-9-14-7-11-5-3-1-8-15-18-10-4-12-2-6- 16-13-19	119						
7	11-7-1-14-3-17-9-5-12-18-10-15-8-2-4-6- 13-19-16	121						
8	14-3-5-9-7-11-1-17-2-10-6-8-18-4-15-12- 19-13-16	121						
9	17-7-14-1-9-3-11-5-2-4-10-18-6-12-15-8- 13-19-16	121						
10	3-17-14-7-1-5-9-11-6-2-15-12-10-4-8-18- 13-19-16	121						
11	14-11-17-5-7-3-9-1-10-4-2-12-6-15-8-18- 19-16-13	123						
12	5-17-11-1-3-9-7-14-10-18-15-8-12-2-4-6-	123						
13	19- 13- 16 3-1-7-5-17-9-11-14-4-10-12-2-6-18-8-15-	124						
14	16- 13- 19 3- 1- 14- 5- 9- 17- 7- 11- 15- 8- 12- 10- 6- 18- 4- 2- 16- 13- 19	125						
15	11-7-14-5-1-17-9-3-10-4-6-8-15-2-12-18- 13-16-19	125						
16	11-7-3-1-9-14-17-5-15-2-12-8-4-6-18-10- 13-16-19	125						
17	9-14-7-5-17-3-11-1-8-15-12-6-4-18-2-10- 16-13-19	125						
18	5-1-14-3-9-7-17-11-15-8-10-18-2-6-4-12- 16-19-13	126						
19	17-11-14-9-1-5-3-7-8-10-4-15-12-18-6-2- 16-19-13	126						
20	11-1-17-5-9-7-14-3-8-4-18-15-12-2-10-6- 16-19-13	126						
21	3-7-11-5-14-9-1-17-6-8-10-15-12-4-18-2- 13-16-19	127						
22	11-14-5-1-9-7-17-3-2-4-15-8-12-6-10-18- 19-16-13	127						
23	9-3-1-17-11-5-14-7-15-8-4-12-6-2-10-18- 13-19-16	127						
24	11-9-1-14-7-5-17-3-15-4-6-10-8-2-12-18- 19-13-16	127						
25	11-17-5-9-3-1-14-7-8-15-12-6-4-2-10-18- 16-13-19	127						
26	1-7-11-9-17-5-14-3-2-4-10-12-6-18-15-8- 16-13-19	129						
27	9-17-3-11-14-1-5-7-10-4-18-8-15-6-12-2- 16-13-19	129						
28	11-17-9-1-14-7-5-3-18-15-6-10-2-8-4-12- 19-16-13	130						
29	17-1-11-9-14-5-7-3-12-10-4-2-8-6-18-15- 19-16-13	130						
30	9-7-11-5-1-3-17-14-6-8-18-4-15-10-2-12- 19-16-13	130						
31	11-5-7-1-3-9-17-14-8-4-6-18-2-10-15-12- 19-13-16	130						
32	5-1-9-14-11-3-7-17-6-18-2-10-4-12-15-8- 16-19-13	130						
33	11-5-1-7-14-9-3-17-6-8-15-18-10-12-2-4- 19-16-13	130						
34	9-3-14-5-11-17-1-7-15-4-2-18-6-12-10-8- 16-13-19	130						
35	11-3-9-1-14-17-7-5-8-4-6-15-18-12-2-10- 16-19-13	130						
36	9-1-7-17-3-14-11-5-6-10-2-15-18-12-4-8- 13-19-16	134						

	37	14-1-5-7-9-17-11-3-10-4-12-18-2-8-6-15- 19-13-16	135
Ī	38	5-14-9-7-17-1-11-3-12-2-4-8-18-15-10-6-	138
		19- 13- 16	

From the above table it can be interpreted that in 1st sequence- number '9' represents 1st operation on the job no 5 and similarly number '5' represents the 1st operation on job no 3. Similarly, number '19' represents 3rd operation on job no 8 and so on.

Step 4: Generate a random neighboring solution these are presented in table 2 and the steps discussed in 3.4 are implemented to identify the maximum operational completion time (makespan) for each sequence.

Table 2: Generated random neighboring solutions for the SA

	SA.	
S.	Sequence	Makes
No		pan
1	3- 17- 14- 7- 1- 11- 5- 9- 2- 8- 18- 4- 12- 10- 15- 6- 16- 19- 13	116
2	5-7-1-9-14-3-17-11-2-4-15-8-18-12-6-10-19-13- 16	116
3	5-1-11-3-17-7-9-14-2-18-4-12-10-15-6-8-16-19-	116
4	13 7-17-1-5-3-9-14-11-6-8-10-18-2-4-12-15-16-19- 13	116
5	7- 9- 17- 5- 1- 11- 3- 14- 10- 6- 15- 12- 18- 2- 8- 4- 19- 16- 13	118
6	1- 3- 11- 9- 7- 14- 17- 5- 18- 12- 2- 6- 10- 4- 8- 15- 16- 13- 19	118
7	3-14-1-5-9-11-7-17-15-12-10-18-4-8-6-2-16-19-	118
8	13 11-5-9-7-17-1-3-14-6-10-4-2-12-15-18-8-19-16- 13	119
9	14-5-17-11-7-1-3-9-15-10-12-2-8-6-18-4-16-13-	119
10	5-1-9-11-7-17-3-14-10-4-2-18-12-6-8-15-13-16- 19	120
11	14-9-7-11-17-5-3-1-15-12-10-4-6-2-18-8-13-19- 16	121
12	17- 14- 5- 9- 1- 7- 3- 11- 10- 8- 4- 12- 18- 6- 2- 15- 16- 13- 19	121
13	7- 5- 9- 3- 11- 17- 14- 1- 4- 12- 10- 18- 15- 2- 6- 8- 13- 16- 19	121
14	9- 17- 5- 1- 3- 11- 14- 7- 18- 12- 4- 8- 6- 10- 15- 2- 19- 16- 13	121
15	9- 7- 3- 14- 1- 17- 11- 5- 8- 10- 4- 15- 6- 18- 2- 12- 19- 13- 16	121
16	9- 3- 5- 17- 7- 1- 14- 11- 12- 8- 10- 6- 18- 4- 2- 15- 16- 19- 13	123
17	11- 14- 5- 3- 9- 7- 1- 17- 8- 18- 6- 2- 12- 10- 4- 15- 13- 19- 16	124
18	14- 3- 11- 5- 9- 7- 17- 1- 15- 2- 18- 12- 6- 10- 8- 4- 16- 19- 13	124
19	3- 5- 14- 11- 17- 1- 7- 9- 2- 12- 18- 10- 6- 4- 15- 8- 16- 19- 13	124
20	1- 9- 5- 7- 14- 3- 17- 11- 8- 12- 6- 15- 2- 18- 10- 4- 19- 16- 13	125
21	14-5-3-7-9-11-1-17-6-2-4-10-12-18-8-15-13-19- 16	125
22	11- 3- 14- 5- 9- 17- 7- 1- 2- 18- 12- 15- 6- 4- 8- 10- 16- 13- 19	125
23	5-17-14-7-9-1-3-11-6-8-18-2-12-4-15-10-13-19- 16	126
24	11- 17- 7- 1- 3- 14- 5- 9- 15- 6- 10- 18- 4- 2- 8- 12- 19- 16- 13	126
25	11-1-17-9-3-14-7-5-18-6-12-15-2-10-8-4-13-16- 19	127
26	11- 14- 1- 5- 17- 7- 9- 3- 2- 4- 6- 12- 18- 10- 8- 15- 16- 19- 13	127

Simultaneous Scheduling of Machines and AGVs in FMS through Simulated Annealing Algorithm

27	1-5-9-3-11-14-17-7-18-4-12-8-6-2-15-10-13-19-	127
	16	
28	5- 9- 14- 1- 11- 3- 17- 7- 10- 12- 18- 6- 8- 4- 15- 2- 13- 16-	129
	19	
29	7- 14- 17- 5- 1- 11- 3- 9- 8- 4- 18- 10- 2- 15- 12- 6- 16- 13-	130
	19	
30	17-11-7-3-1-14-5-9-2-10-15-12-6-18-8-4-13-19-	130
	16	
31	9-7-14-17-5-1-11-3-6-2-10-12-8-15-18-4-13-19-	130
	16	
32	5-9-7-14-11-3-1-17-18-6-12-15-2-10-4-8-13-16-	132
	19	
33	17-9-5-14-7-3-11-1-4-8-15-2-10-6-12-18-16-13-	133
	19	
34	7-5-14-1-11-3-17-9-4-15-2-6-10-8-12-18-13-19-	133
	16	
35	7-17-1-14-11-9-3-5-4-10-6-12-18-15-2-8-16-19-	135
	13	
36	5-7-14-3-1-11-9-17-18-2-8-6-4-12-15-10-13-19-	136
	16	
37	17-9-7-1-14-11-5-3-15-18-10-8-12-2-6-4-16-19-	138
	13	
38	9-5-14-11-1-3-17-7-8-2-6-18-4-15-12-10-13-16-	144
	19	

Step 5: Compare the generated population size and generated neighboring solutions to get the best solutions and these are presented in table 3.

Table 3: Comparison Sequences for SA

S.No	Sequence	Makes
		pan
1	3- 9- 11- 7- 1- 5- 14- 17- 10- 12- 15- 8- 4- 6- 2- 18- 16- 19- 13	110
2	11-7-3-9-1-17-5-14-10-15-8-2-6-18-12-4-	110
2	16- 19-13	112
3	17- 7- 5- 9- 3- 1- 11- 14- 2- 4- 12- 8- 6- 10- 18- 15- 19- 16- 13	116
	14-7-9-17-3-5-1-11-10-6-15-12-18-4-8-2-	
4	19-13-16	116
5	7- 1- 17- 5- 11- 14- 3- 9- 18- 6- 15- 2- 12- 4- 10- 8-	116
	16-19-13	
6	1-3-11-9-7-14-17-5-18-12-2-6-10-4-8-15- 16-13-19	118
_	3-14-1-5-9-11-7-17-15-12-10-18-4-8-6-2-	110
7	16-19-13	118
8	11-5-9-7-17-1-3-14-6-10-4-2-12-15-18-8-	
0	19- 16- 13	119
9	14-5-17-11-7-1-3-9-15-10-12-2-8-6-18-4-	110
	16- 13- 19 5- 1- 9- 11- 7- 17- 3- 14- 10- 4- 2- 18- 12- 6- 8- 15-	119
10	13- 16- 19	120
11	14- 9- 7- 11- 17- 5- 3- 1- 15- 12- 10- 4- 6- 2- 18- 8-	
11	13- 19- 16	121
12	17- 14- 5- 9- 1- 7- 3- 11- 10- 8- 4- 12- 18- 6- 2- 15- 16- 13- 19	121
	7-5-9-3-11-17-14-1-4-12-10-18-15-2-6-8-	121
13	13- 16- 19	121
14	9- 17- 5- 1- 3- 11- 14- 7- 18- 12- 4- 8- 6- 10- 15- 2-	
	19- 16- 13	121
15	9- 7- 3- 14- 1- 17- 11- 5- 8- 10- 4- 15- 6- 18- 2- 12- 19- 13- 16	121
	9-3-5-17-7-1-14-11-12-8-10-6-18-4-2-15-	121
16	16-19-13	123
17	11- 14- 5- 3- 9- 7- 1- 17- 8- 18- 6- 2- 12- 10- 4- 15-	
17	13- 19- 16	124
18	14- 3- 11- 5- 9- 7- 17- 1- 15- 2- 18- 12- 6- 10- 8- 4- 16- 19- 13	124
	3-5-14-11-17-1-7-9-2-12-18-10-6-4-15-8-	124
19	16- 19- 13	124
20	1- 9- 5- 7- 14- 3- 17- 11- 8- 12- 6- 15- 2- 18- 10- 4-	
20	19- 16- 13	125
21	14-5-3-7-9-11-1-17-6-2-4-10-12-18-8-15-	105
	13- 19- 16	125

11- 3- 14- 5- 9- 17- 7- 1- 2- 18- 12- 15- 6- 4- 8- 10- 16- 13- 19	125
5- 17- 14- 7- 9- 1- 3- 11- 6- 8- 18- 2- 12- 4- 15- 10-	126
11- 17- 7- 1- 3- 14- 5- 9- 15- 6- 10- 18- 4- 2- 8- 12- 19- 16- 13	126
11- 1- 17- 9- 3- 14- 7- 5- 18- 6- 12- 15- 2- 10- 8- 4- 13- 16- 19	127
11- 14- 1- 5- 17- 7- 9- 3- 2- 4- 6- 12- 18- 10- 8- 15-	127
1-5-9-3-11-14-17-7-18-4-12-8-6-2-15-10- 13-19-16	127
5- 9- 14- 1- 11- 3- 17- 7- 10- 12- 18- 6- 8- 4- 15- 2- 13- 16- 19	129
7- 14- 17- 5- 1- 11- 3- 9- 8- 4- 18- 10- 2- 15- 12- 6- 16- 13- 19	130
17- 11- 7- 3- 1- 14- 5- 9- 2- 10- 15- 12- 6- 18- 8- 4- 13- 19- 16	130
9- 7- 14- 17- 5- 1- 11- 3- 6- 2- 10- 12- 8- 15- 18- 4- 13- 19- 16	130
5- 1- 9- 14- 11- 3- 7- 17- 6- 18- 2- 10- 4- 12- 15- 8- 16- 19- 13	130
11- 5- 1- 7- 14- 9- 3- 17- 6- 8- 15- 18- 10- 12- 2- 4- 19- 16- 13	130
9- 3- 14- 5- 11- 17- 1- 7- 15- 4- 2- 18- 6- 12- 10- 8- 16- 13-19	130
11- 3- 9- 1- 14- 17- 7- 5- 8- 4- 6- 15- 18- 12- 2- 10- 16- 19-13	130
9- 1- 7- 17- 3- 14- 11- 5- 6- 10- 2- 15- 18- 12- 4- 8- 13- 19-16	134
14- 1- 5- 7- 9- 17-11- 3- 10- 4- 12- 18 -2- 8- 6- 15- 19- 13- 16	135
5- 14- 9- 7- 17- 1- 11- 3- 12- 2- 4- 8- 18- 15- 10- 6- 19- 13- 16	138
	16- 13- 19 5- 17- 14- 7- 9- 1- 3- 11- 6- 8- 18- 2- 12- 4- 15- 10- 13- 19- 16 11- 17- 7- 1- 3- 14- 5- 9- 15- 6- 10- 18- 4- 2- 8- 12- 19- 16- 13 11- 1- 17- 9- 3- 14- 7- 5- 18- 6- 12- 15- 2- 10- 8- 4- 13- 16- 19 11- 14- 1- 5- 17- 7- 9- 3- 2- 4- 6- 12- 18- 10- 8- 15- 16- 19- 13 1- 5- 9- 3- 11- 14- 17- 7- 18- 4- 12- 8- 6- 2- 15- 10- 13- 19- 16 5- 9- 14- 1- 11- 3- 17- 7- 10- 12- 18- 6- 8- 4- 15- 2- 13- 16- 19 7- 14- 17- 5- 1- 11- 3- 9- 8- 4- 18- 10- 2- 15- 12- 6- 16- 13- 19 17- 11- 7- 3- 1- 14- 5- 9- 2- 10- 15- 12- 6- 18- 8- 4- 13- 19- 16 9- 7- 14- 17- 5- 1- 11- 3- 6- 2- 10- 12- 8- 15- 18- 4- 13- 19- 16 5- 1- 9- 14- 11- 3- 7- 17- 6- 18- 2- 10- 4- 12- 15- 8- 16- 19- 13 11- 5- 1- 7- 14- 9- 3- 17- 6- 8- 15- 18- 10- 12- 2- 4- 19- 16- 13 9- 3- 14- 5- 11- 17- 1- 7- 15- 4- 2- 18- 6- 12- 10- 8- 16- 13- 19 11- 3- 9- 1- 14- 17- 7- 5- 8- 4- 6- 15- 18- 12- 2- 10- 16- 19- 13 9- 1- 7- 17- 3- 14- 11- 5- 6- 10- 2- 15- 18- 12- 4- 8- 13- 19- 16 14- 1- 5- 7- 9- 17- 11- 3- 10- 4- 12- 18- 2- 8- 6- 15- 19- 13- 16 5- 14- 9- 7- 17- 1- 11- 3- 12- 2- 4- 8- 18- 15- 10- 6-

Step 6: the improved random search in step 5 will become input for the next iteration which starts from step 3. This process will continue till acceptable solution is found within the specified limits (in the present case 1000 iterations).

Step 7: Receptor editing:

The editing of the sequence in the population after the comparison process is known as receptor editing. In this process several worst makespan value sequences are eliminated from the population and randomly generated sequences are added in those places. After editing the sequences in the population, the new population has gone to next iteration until termination criterion is reached.

Step 8: Termination criterion:

The process of comparison is repeated till the termination criterion is satisfied.

Several termination criteria are available in the literature like, repeating the procedure for number of generations, running the algorithm for a fixed duration of time, and stopping the simulation when there is no improvement in fitness for the last "g" generations. In this work the first criterion viz., repeating the procedure for number of generations is taken as the termination criterion.

Step 9: The evaluated values of different parameters in arriving at the makespan after 1000 iterations for the best sequence is presented in table 4.

Table.4: Operations schedule through SA (for Problem set 7 and layout 3)

Operati on Number	Machin e Number	Vehicle Number	Trave l Time	Job Read y	Job Reac h	Make Span
17	1	1	0	2	2	13

5	2	2	0	4	4	13
11	2	1	14	18	18	31
3	2	2	14	18	31	42
7	3	1	28	38	38	54
1	1	2	28	30	30	36
14	1	1	42	44	44	54
9	1	2	42	44	54	63
12	3	1	46	52	54	73
8	4	1	54	56	56	63
2	4	2	44	54	63	69
15	2	2	58	60	60	69
10	3	1	63	71	73	91
4	4	2	60	68	69	78
18	2	2	72	74	74	83
6	4	2	74	82	82	89
16	3	1	79	85	91	104
13	4	1	85	87	89	95
19	4	2	88	96	96	104

Table 4 shows operation scheduling of through simulated annealing algorithm for job set 7 layout 3 is shown. From the table it is observed that operation 17 on machine 1 is completed by 13 min hence 1st operation will start after completion of 17st operation on machine 1. In case of job set 7 and layout 3 operation 5 on machine 2 is completed by 13min hence 11th operation on machine 2 will start after completion of 5th operation on machine 2. Similarly, no operation on the particular machine will start until the operation on the machine is completed. From the vehicle heuristic algorithm for first two operations AGVs are selected randomly in case of third operation AGV '1' is selected basing on the availability of AGV with minimum travel time this constraint will be taking care in the algorithm, for job set 7 and layout 3 the operational completion time (makespan) is 104.

V. RESULT AND DISCUSSSION

Computations for completion time for different combinations of job sets and layouts for simulated annealing algorithm, Priority rules (FCFS, SPT, LPT, Nageswararao et al. 2017), Heuristic (NEH, Prakash babu et al, 2018, FUZZY, P. B. Kanakavalli et al, 2018) with t/p > 0.25 are done and tabulated in 5. A code is used to designate the example problems which are given in the first column. The digits that follow 1.1 indicate the job set and the layout. In t/p ratio<0.25 table another digit is appended to the code. Here-having a 0 or 1 as the last digit implies that the process times are doubled or tripled- respectively- where in both cases travel times are halved.

Table 5. Comparison of make span values (for t/p>0.25)

Job. No	t/p	FCFS	SPT	LPT	NEH	FUZ ZY	SA
1.1	0.59	173	193	177	165	208	96
2.1	0.61	158	158	177	169	170	113
3.1	0.59	202	224	198	195	211	120
4.1	0.91	263	267	264	260	268	116
5.1	0.85	148	164	148	147	174	89
6.1	0.78	231	240	227	225	233	134
7.1	0.78	195	210	201	173	196	132
8.1	0.58	261	261	266	261	261	185
9.1	0.61	270	277	268	259	273	117
10.1	0.55	308	308	310	305	315	167
1.2	0.47	143	173	165	147	188	82
2.2	0.49	124	124	130	116	127	86

3.2	0.47	162	188	160	154	178	96
4.2	0.73	217	223	224	215	232	92
5.2	0.68	118	144	131	117	156	73
6.2	0.54	180	169	165	158	175	109
7.2	0.62	149	160	149	136	139	92
8.2	0.46	181	181	198	181	181	159
9.2	0.49	250	249	244	205	249	102
10.2	0.44	290	288	287	274	274	148
1.3	0.52	145	175	167	145	190	84
2.3	0.54	130	130	136	122	133	100
3.3	0.51	160	190	162	158	176	102
4.3	0.8	233	237	230	226	234	96
5.3	0.74	120	146	133	117	156	76
6.3	0.54	182	171	167	160	177	117
7.3	0.68	155	166	151	138	141	104
8.3	0.5	183	183	200	183	183	169
9.3	0.53	252	251	246	207	251	106
10.3	0.49	293	294	293	280	280	154
1.4	0.74	189	207	189	189	228	104
2.4	0.77	174	174	174	169	190	124
3.4	0.74	220	250	212	213	225	130
4.4	1.14	301	301	298	298	294	131
5.4	1.06	171	189	171	171	193	97
6.4	0.78	249	252	237	234	243	144
7.4	0.97	217	242	151	192	232	154
8.4	0.72	285	285	200	285	285	195
9.4	0.76	292	311	290	285	295	123
10.4	0.69	350	350	345	345	353	181

In the optimal sequence of machines and AGVs are determined by using FCFS-SPT-LPT-NEH-FUZZY and SA for T/P >0.25 are shown in Table 5. From Table 5 it can be observed that, out of 40 problems, 40 problems give better results using SA when compared with all other five algorithms (100%). Comparison of the makespan for various job sets and with different layouts and different algorithms are shown graphically in Figure 1. Computations for completion time for different combinations of job sets and layouts for four metaheuristic and one hybrid metaheuristic algorithms with t/p < 0.25 are done and tabulated in 6.

Table 6. Comparison of make span values (for t/p>0.25)

		•		-		` _	,
Job.No	t/p	FCFS	SPT	LPT	NEH	FUZZY	SA
1.10	0.15	207	248	252	207	278	126
2.10	0.15	217	217	225	185	208	148
3.10	0.15	257	327	282	255	300	162
4.10	0.15	303	328	317	277	352	123
5.10	0.21	152	190	187	154	225	102
6.10	0.16	304	281	297	272	294	202
7.10	0.19	231	240	264	213	235	137
8.10	0.14	338	338	347	332	338	292
9.10	0.15	390	367	359	324	382	182
10.10	0.14	452	429	444	398	393	262
1.20	0.12	194	238	246	197	268	123
2.20	0.12	194	194	206	167	187	143
3.20	0.12	241	311	270	241	285	159
4.20	0.12	285	312	298	248	340	116
5.20	0.17	142	180	184	143	217	100
6.20	0.12	292	260	284	251	277	191
7.20	0.15	212	218	249	188	210	136
8.20	0.11	306	319	334	306	306	287
9.20	0.12	380	355	347	309	372	179
10.20	0.11	445	423	439	388	384	259

1.30 0.13 195 239 247 196 169 122 2.30 0.13 197 197 209 170 190 146 3.30 0.13 240 312 271 240 284 160 4.30 0.13 292 317 301 255 339 117 5.30 0.18 141 181 183 143 216 99 6.30 0.24 296 261 285 252 278 188 7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
3.30 0.13 240 312 271 240 284 160 4.30 0.13 292 317 301 255 339 117 5.30 0.18 141 181 183 143 216 99 6.30 0.24 296 261 285 252 278 188 7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 </td <td>1.30</td> <td>0.13</td> <td>195</td> <td>239</td> <td>247</td> <td>196</td> <td>169</td> <td>122</td>	1.30	0.13	195	239	247	196	169	122
4.30 0.13 292 317 301 255 339 117 5.30 0.18 141 181 183 143 216 99 6.30 0.24 296 261 285 252 278 188 7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 </td <td>2.30</td> <td>0.13</td> <td>197</td> <td>197</td> <td>209</td> <td>170</td> <td>190</td> <td>146</td>	2.30	0.13	197	197	209	170	190	146
5.30 0.18 141 181 183 143 216 99 6.30 0.24 296 261 285 252 278 188 7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 </td <td>3.30</td> <td>0.13</td> <td>240</td> <td>312</td> <td>271</td> <td>240</td> <td>284</td> <td>160</td>	3.30	0.13	240	312	271	240	284	160
6.30 0.24 296 261 285 252 278 188 7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321<	4.30	0.13	292	317	301	255	339	117
7.30 0.17 215 221 250 191 213 137 8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303<	5.30	0.18	141	181	183	143	216	99
8.30 0.13 307 320 335 307 307 288 9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246<	6.30	0.24	296	261	285	252	278	188
9.30 0.13 381 356 348 310 373 180 10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332<	7.30	0.17	215	221	250	191	213	137
10.30 0.12 448 426 442 391 387 260 1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343<	8.30	0.13	307	320	335	307	307	288
1.40 0.18 213 255 254 213 288 124 2.41 0.13 307 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 </td <td>9.30</td> <td>0.13</td> <td>381</td> <td>356</td> <td>348</td> <td>310</td> <td>373</td> <td>180</td>	9.30	0.13	381	356	348	310	373	180
2.41 0.13 307 319 267 293 217 3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	10.30	0.12	448	426	442	391	387	260
3.40 0.18 261 330 282 258 305 162 3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	1.40	0.18	213	255	254	213	288	124
3.41 0.12 370 476 411 310 435 239 4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	2.41	0.13	307	307	319	267	293	217
4.41 0.19 434 471 451 393 504 177 5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	3.40	0.18	261	330	282	258	305	162
5.41 0.18 218 269 270 222 321 148 6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	3.41	0.12	370	476	411	310	435	239
6.40 0.19 310 288 299 275 303 199 7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	4.41	0.19	434	471	451	393	504	177
7.40 0.24 239 251 270 221 246 138 7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	5.41	0.18	218	269	270	222	321	148
7.41 0.16 329 344 385 224 332 203 8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	6.40	0.19	310	288	299	275	303	199
8.40 0.18 343 343 349 339 343 293 9.40 0.19 396 379 370 325 388 182	7.40	0.24	239	251	270	221	246	138
9.40 0.19 396 379 370 325 388 182	7.41	0.16	329	344	385	224	332	203
10.10	8.40	0.18	343	343	349	339	343	293
10.40 0.17 466 445 455 415 408 265	9.40	0.19	396	379	370	325	388	182
	10.40	0.17	466	445	455	415	408	265

In the optimal sequence of machines and AGVs are determined by using FCFS-SPT- LPT- NEH-FUZZY and SA for T/P<0.25 are shown in Table 6. From Table 6 it can be observed that out of 42 problems, 42 problems give better results using SA when compared with all other five algorithms (100%). Comparison of the makespan for various job sets and with different layouts and different algorithms are shown graphically in Figure 2.

VI. CONCLUSION

Flexible Manufacturing system is considered as better option to face the challenges of global competition. But for successful implementation efficient scheduling is essential. Scheduling of an FMS is a very difficult problem because of other consideration like material handling. In this work an attempt has been made to solve the problem of scheduling both the machines and AGVs simultaneously by metaheuristic algorithm the following conclusions are drawn from this work. Performances of Metaheuristic Algorithms are evaluated by considering 82 benchmark problems consisting of different job sets and layout configurations. From the comparison of these results Simulated Annealing algorithms yielded improved results in 82 problems.

SCOPE OF FUTURE WORK

In this research work simulating metaheuristic Algorithms to solve simultaneous scheduling problems in FMS. There is scope for further research work in the following aspects: In FMS jobs are entered with different priorities and the problem can be made dynamic in nature. When required sequence needs to reschedule. The simultaneous scheduling problem can be extended further by including AS/RS system. Real time issues like traffic jamming- without buffer spacemachine breakdown can also be considered.

ACKNOWLEDGMENT

The authors greatly acknowledge the financial support from DST-SERB- Govt.of India (Sanction No:SB/EMEQ-501/2014) for carrying out this R & D activity.

REFERENCES

- U.Bilge &G. Ulusoy, "A time window approach to simultaneous scheduling of machines and material handling system in an FMS". Journal of Operations Research, 43, 1995, pp. 1058-1070.
- T.F.Abdelmaguid, A.O. Nasef, B.A.Kamal & M.F.Hassan, "A hybrid GA heuristic approach to the simultaneous scheduling of machines and automated guided vehicles". International Journal of Production Research, 42, 2004 pp267-281.
- B.S.P. Reddy, C.S.P Rao, "A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS". International Journal of Advanced Manufacturing Technology, 31,2006, pp 602-613.
- A.G. Babu, A.G., Jerald, J., Haq, N., Muthu V. Luxmi, & T.P Vigneswaralu, "Scheduling of machines and automated guided vehicles in FMS using differential evolution". Int. J. Prod. Res, iFirst, 2010 pp 1-17.
- C.Anandaraman, A. Vikram M. Sankar, R. Natarajan, "Evolutionary approaches for scheduling a flexible manufacturing system with automated guided vehicles and robots". International Journal of Industrial Engineering Computations, 3, 2012,
- H.E. Nouri, O.B, Driss, & K. Ghédira," Simultaneous scheduling of machines and transport robots in flexible job shop environment using hybrid metaheuristics based on clustered holonic multiagent model". Computers, 2016, pp 488-501.
- K.M. Amjad et al, "Recent research trends in genetic algorithm based flexible job shop scheduling problems". Mathematical Problems in Engineering, 2018, pp
- M. Lundy & A. Mees, "Convergence of an annealing algorithm". Math. Program, 34, 1986, pp 111-124.
- S.Kirkpatrick, C.D. Gelatt, & M.P. Vecchi, "Optimization by Simulated Annealing." Science New Series, 220, 1983, 671-680.
- M.Nageswararao, K.Narayanarao, G.Rangajanardhana, "Integrated Scheduling of Machines and AGVs in FMS by Using Dispatching Rules". Journal of Production Engineering, 20(1),2017, pp. 75-84.
- K. Prakash babu, V. Vijaya babu, & M. Nageswara Rao, "Fuzzy heuristic algorithm for simultaneous scheduling problems in flexible manufacturing system". Management Science Letters, 8(12), 2018, pp1319-1330.
- K. Prakash babu, V. Vijaya babu, & M. Nageswara Rao. "Implementation of heuristic algorithms to synchronized planning of machines and AGVs in FMS". Management Science Letters, 8(6), 2018, pp.543-554.

AUTHORS PROFILE

Dr. Nageswara Rao. M, Department of mechanical engineering, K L E F University, Guntur, AP, India.

Mrs Varakumari.S Department of E C E, K L E F University. Guntur, AP, India.

Praneeth Inturi Studying Final Year B.Tech Mechanical Engineering from K L E F University, Guntur, AP, India.

Gaya Prasad Kurmi Studying Final Year B.Tech Mechanical Engineering from K L E F University, Guntur, AP, India.

Venkata Reddy.D Studying Final Year B.Tech Mechanical Engineering from K L E F University, Guntur, AP, India.

Vineeth.E Studying Final Year B.Tech Mechanical Engineering from K L E F University, Guntur, AP, India.

D. Maheshwar Reddy Studying Final Year B.Tech Mechanical Engineering from K L E F University, Guntur, AP, India

