
International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075 (Online), Volume-9 Issue-4, February 2020 

3248 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: D1882029420/2020©BEIESP 
DOI: 10.35940/ijitee.D1882.029420 
Journal Website: www.ijitee.org 

 
Abstract: The modus operandi of congregating data pre-owned 

by home area network (HAN) protocols in order to deliver data 
across confined or extensive distance connection and that which is 
transmittal over a digital network in the form of packets is called 
as packet switching. Packet switching necessitates packaging of 
data in meagre units (packets) that are routed through a network, 
based on destination address contained within each packet and 
with the usage of network switches and routers. In packet 
switching networks, routing is the Avant-graded and multifaceted 
resolution maker, that controls the direction of network packets 
from their source in the vicinity of their destination through 
intermediate network nodes by precise packet advancing 
techniques. Here, in this disquisition we made an interpretation 
apropos the dyad pre-eminent shortest path (closest distance) 
searching algorithms, which are used in routing. They’re the 

BELLMAN-FORD and DIJKSTRA’S algorithm. The 
anatomization of the differentiation between the two is given 
concisely.   
   

Keywords: relaxation, shortest distance, routing protocol, 
source node, destination node. 

I. INTRODUCTION 

In the current world scenario, the need of people to use the 
technology is gradually increasing and almost all of this 
technology is using the internet as communication media. The 
internet can be of a very great size that a single routing 
protocol cannot rule the roost the functionalism of 
refurbishing the routing inventory of every router. In order to 
overcome this problem, the internet is fractionated into a 
self-determining that is, a self-governing system.  
In general, protocols that are configured on routers with the 
purpose of exchanging routing information in which the 
routing algorithm functions inside only within the dominions 
is called as intra dominion routing and the divulgation joining 
the self-determined operational structures is called as 
inter-dominion routing. The protocols used in intra 
dominion(commonly routers) routing are known as 
Interior-gateway protocols.  
 
Revised Manuscript Received on February 28, 2020. 
* Correspondence Author 

Pooja Ravi*, Department of Computer Science, RN Shetty Institute of 
Technology, Channasandra, Bangalore, India. 
E-mail-id:ravibsu@gmail.com 

Pragna B Rao, Department of Information Science & Engineering, RN 
Shetty Institute of Technology, Channasandra, Bangalore, India. 
E-mail-id:balajiraopragna@gmail.com 

 
© The Authors. Published by Blue Eyes Intelligence Engineering and 
Sciences Publication (BEIESP). This is an open access article under the 
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

 

Some commonly used protocols for the intra domain routing 
are RIP (resource information protocol) and OSPF (open 
shortest path first).The Routing Information Protocol is a 
effectual routing protocol which utilizes the hop count as a 
routing criterion to perceive the optimal path allying the 
source and destination network and the Open Shortest Path 
First is a linkage routing protocol which is used to detect the 
ideal path allying the genesis(source) and 
terminus(destination) router using its own closest path.  
The BELLMAN-FORD and the DIKSTRA’S algorithms are 
the widely known algorithms utilized in the intra dominion 
routing to amend the routing inventories. 

II.  BELLMAN-FORD ALGORITHM 

The BELLMAN-FORD algorithm is used to perceive the 
closest path in a weighted digraph (where the visual 
representation(graph) can have unfavorable/negative edges). 
The algorithm even detects the extant of an edge with negative 
weight. The design and composition of Bellman-Ford is 
analogous to that of Dijkstra’s algorithm, but as a replacement 
of intemperately selecting the least-weighted node not yet 
prepared to qualify. The algorithm proceeds by qualification, 
in which the rough calculations to rectify the distance are 
restored by a recommended distance up until they finally in 
the fullness of time set foot on(reach) the explication. The 
algorithm follows the dynamic programming approach, in 
which the extent from the source node to all the other 
neighbors if found and chooses the shortest path in that and 
using that node tries to reach the final node thus, reaching the 
destination node. The algorithm simply qualifies all the edges, 
and does this |V|-1 times, where |V| is the quota of vertices in 
the graph. 

A. Procedure 

Step 1: Assign the extent from genesis(source) to each and 
every apex(vertex) as infinite and distance to genesis (source) 
itself as 0. Generate an array ext [] of size |A| with all the 
values as infinite except ext [gen] where gen is the 
genesis(source) apex(vertex). 
Step 2: Compute the closest distances. Do following |a|-1 
times where |a is the number of apices(vertices) in given 
visual representation(graph). 

Step a: Do the subsequent for each edge u-a 
If ext[a]>ext[u] + weight of edge ua, then streamline ext[a] 
ext[a] =ext[a] + weight of edge uv 
Step 3: Promulgate if there is a negative sequenced cycle in 
the visual representation(graph). Do the following for each 
edge u-v 

 
 

Differentiation between Bellman-Ford and 
Dijsktra Algorithm in Routing Protocols 

Pooja Ravi, Pragna B Rao 

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijitee.D1882.029420&domain=www.ijitee.org


 
Differentiation between Bellman-Ford and Dijsktra Algorithm in Routing Protocols 

 

3249 

 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: D1882029420/2020©BEIESP 
DOI: 10.35940/ijitee.D1882.029420 
Journal Website: www.ijitee.org 

If ext[a]>ext[u] + weight of edge uv, then “Visual 
representation (graph) contains negative weight sequenced 
cycle” 

III. DIJKSTRA’S ALGORITHM 

The DIJKSTRA’S algorithm, was devised by Dutch 
computer boffin Edgser Dijkstra in 1959, is a visual 
representation(graph) search algorithm used to detect the lone 
source closest path for a graph with positive edges. This 
algorithm is handed-down in routing protocols mostly 
significantly transitional system to intermediate system and 
open shortest path first. It is also exerted as a subprogram in 
supplementary algorithms like Johnson’s algorithm. For a 
distinct genesis(source) node in the visual representation, the 
algorithm detects the closest path (lowest cost path) 
connecting the node and every possible  node in the visual 
representation(graph). The algorithm can also be utilized to 
find the shortest path from single source to single 
terminus(destination) by terminating the algorithm once the 
shortest path to the terminus(destination) node has been 
determined. 

A. Procedure 

Step1: Generate set cptSet (closest path tree set) that keeps 
track of apices (vertices) comprehended in closest path tree, 
i.e., whose minimal distance from source(genesis) is 
calculated and finalized. Initially, this set is empty. 
Step2: Allocate a extent value to all apices(vertices) in the 
input visual representation(graph). Initialize all extent values 
as INFINITUDE. Allocate extent value as 0 for the 
genesis(source) apex vertex so that it is picked first. 
Step3: While cptSet doesn’t comprehend all apogee 
(vertex)Step a: Pick a apex u which is not there in cptSet and 
has minimum distance value. 

Step b: Include u to cptSet. 
Step c: Update distance value of all adjacent apices of u. To 
update the extent values, iterate through all adjacent vertices. 
For every adjacent apex a, if sum of extengt value of u (from 
genesis) and weight of edge u-a, is less than the extent value of 
a, then update the extent value of a. 

IV. ALGORITHM 

A. Bellman-Ford Algorithm 

Input: Edges edges[], int edgecalculate[], int nodecalculate, 
int genesis, int terminus 
Output: Routing table 
{ 

int *extent;    // Should be allocated 
int i, j; 
if (extent== NULL) then{ 

      printf (stderr, "malloc () failed\n"); 

exit (EXIT_FAILURE); 
} 
for (i 0; i < nodecalculate; ++i) 
    extent[i] = INFINITUDE; 
extent[genesis] =0; 
for (i0; i < nodecalculate; ++i){ 
     for (j0; j < edgecalculate; ++j){ 

    if (extent [edges[j]. genesis]!= 
INFINITY){ 

         int new_extentdistance[edges[j]. 
genesis] +edges[j]. weight; 

     if (new_extent < 
extent[edges[j]. terminus]) 

  extent[edges[j]. 
terminus] = new_extent; 

    } 
        } 
} 
for (i= 0; i < edgecalculate; ++i){ 

if 
(extent[edges[i].terminus]>extent[edges[i].gene
sis] edges[i].weight){ 

       puts ("Negative edge weight cycles 
detected!"); 

       free (extent); 
        return; 

        } 
} 
B. Dijsktra Algorithm 
Dijkstra(Visual Representation, genesis){ 
 Generate apogee set Q 
 for each apogee a in Visual Representation{ 
  ext[v]INFINITUDE 
  prior[v]UNDETERMINED 
  add up  a to Q 
 } 
 ext[genesis]0 
 while Q is not vacant{ 
          uvertex in Q with min ext[u] 
  detach u from Q 
  for every adjacent v of u{ 
   altext[u]+stretch(u,a) 
   if alt<ext[v]{ 
    ext[v]alt 
    prior[v]u 
   } 
  } 
 } 
 return ext[],prior[] 
} 

V. TIME COMPLEXITY 

                Algorithm              Time Complexity 
Bellman-Ford  O(VE) 

            
 Dijkstra 

O( ) using linear array for priority 
queue 
O((V+E)logV) using binary heap 
O(VlogV+E)using  fibonacci heap 

 



International Journal of Innovative Technology and Exploring Engineering (IJITEE) 
ISSN: 2278-3075 (Online), Volume-9 Issue-4, February 2020 

3250 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: D1882029420/2020©BEIESP 
DOI: 10.35940/ijitee.D1882.029420 
Journal Website: www.ijitee.org 

 

 
 

VI. RESULT  

Results from two algorithms agree –  
A. Bellman-Ford  
1. Calculation for node n needs link cost to neighbor nodes     
     plus total cost to each neighbor from vertex. 
2. Each node can maintain set of costs and paths for every  
    other node 
3. Can exchange information with direct neighbors. 
4. Can update costs and paths based on information from  
     neighbors and knowledge of link costs. 
B. DIJKSTRA 
1. Each node needs complete topology. 
2. Must know link costs of all links in network. 
3. Must exchange information with other nodes. 

VII. CONCLUSION 

As the analysis shows the Dijkstra’s algorithm has a lower 

running time than that of Bellman-ford for a same problem, 
but requires the edges to be non-negative. Thus, 
Bellman-Ford is usually used only when there are negative 
edges. Both of these algorithms solve the single source 
shortest path problem. The major difference between the two 
algorithms is that Bellman-Ford can handle negative edges  
whereas Dijkstra cannot handle negative edges. But, it is to be 
remembered that when there is a negative cycle present in the 
graph then there is no shortest path. 

REFERENCES 

1. en.wikipedia.org/ 
2. Jin Y.Yen. “An algorithm for finding shortest routes from all source notes 

to given destination in general network”, Quart.Appl.Math., 

27,1970,526-530. 
3. Thomas H.Cormen, Charles E.Leiserson, Ronalad L.Rivest and Clifford 

Stein. Introduction to Algorithms, Second Edition. MIT Press and 
McGraw-Hill, 2001. ISBN 0-262-03293-7. Section 24.1: The 
Bellman-Food algorithm, pp.588-592. Problem 24-1, pp.614-615. 

4. “A Study on Contrast and Comparison between Bellman-Ford algorithm 
and Dikstra’s algorithm” by Thippeswamy.K, Hanumanthappa.J, 
Dr.Manjaiah D.H. 

5. Geeks for Geeks 

AUTHORS PROFILE 

 
 Pooja Ravi is a pursuing undergraduate course in 
computer science at RN Shetty Institute of Technology 
ISE Department. She completed her primary education 
from Jyothy Kendriya Vidyalaya, Bangalore in the year 
2015.She then did her pre-univeristy education from Sri 

Kumaran Pre-University College, Bangalore in the year 
2015-2017. She will graduate in the year 2021.Fields of Interest: Artificial 
Intelligence, Machine Learning, Data Science.  
Email-id:ravibsu@gmail.com 

 
Pragna B Rao is a student at RN Shetty Institute of  

Technology, currently pursuing undergrad in Bachelors of 
Information Science & Engineering. She did her schooling 
at Carmel, Bangalore followed by pre-university education 
at Sri Kumaran Pre-University college. She will graduate in 

the year 2021.  She’s an inquisitive person, enjoy learning, and is passionate 

about Data Science, Machine Learning, Software Development and 
Technology Management. Email-id:balajiraopragna@gmail.com 
 
 
 
 


