Computational Modeling on Fuel Cell Cooling with Water Based Copper Oxide Nanofluid
N. K. Kund

N. K. Kund, Department of Production Engineering, Veer Surendra Sai University of Technology, Burla (Sambalpur), Odisha, India.
Manuscript received on 02 July 2019 | Revised Manuscript received on 09 July 2019 | Manuscript published on 30 August 2019 | PP: 1967-1970 | Volume-8 Issue-10, August 2019 | Retrieval Number: J92860881019/2019©BEIESP | DOI: 10.35940/ijitee.J9286.0881019
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (

Abstract: In the smart investigation, CFD programmes got developed and executed with water-CuO nanofluid to envision the thermal concerns of fuel cell. The convective governing equalities of mass, force and drive are computed for predicting the thermal issues of fuel cell. The time step selected throughout the intact computation is 0.0001 s. The soundings affect CFD forecasts of temperature field, temperature contour plus fluid-solid boundary temperature of fuel cell. The fluid-solid boundary temperature of fuel cell is noticed as 340 K. This stands far less than the hazardous limit of 356 K temperature desired for the objective of beating thermal cataclysm of fuel cell. The temperature of water-CuO nanofluid stands peak contiguous to the fuel cell vicinity. Additionally, the temperature of water-CuO nanofluid gently drops with improvement in remoteness from fuel cell. Subsequently, this becomes surrounding temperature within the distant arena precinct. The equivalent temperature curve stands accessible. In addition, the congruent plot of temperature against distance from fuel cell stands publicized. The establishment of CFD revelations stay alongside the backgrounds of capacities.
Keywords: Fuel Cell, Cooling, CFD Codes, Water-CuO Nanofluid.
Scope of the Article: Fuel Cell